BB Impedance Models February 8, 200(

Review of Broad-band Impedance Models

Workshop on Single Bunch Instabilities
and Broad-band Impedance Models

SLAC, 28 February - 2 March 2000

Bruno Zotter

CERN, Geneva, Switzerland (retired)

Bruno Zotter, page .



BB Impedance Models

Bruno Zotter,

BB Models
SPEAR Impedance Model
Broad-Band Resonator Model

Improved BB Model for Periodic Structures

Improved BB Model for a Cavity

Second BB Model for Periodic Structures
Second BB Model for a Cavity
Composite Model

Modified Inductance Model

February 8, 200(



BB Impedance Models

Impedance Models

The coupling impedance consists of contributions of many components with different
characteristics. Each contribution is a complicated function of frequency, usually with
many resonant peaks below or around the beam pipe cut-off frequency, as well as a
characteristic high frequency tail. Many detailed features depend critically on exact
dimensions of structures which may even vary with temperature or other parameters.

Often these details are not required to predict beam stability. For single bunch stability
only short-range wakes are needed, corresponding to smoothed impedances obtained by
averaging, resulting in limited resolution of details of impedance function. Beyond
frequency ¢/o bunches not sensitive to effects of impedance.

Several BB impedance models have been constructed which describe beam-wall
interaction over wide range of bunch characteristics (charge distribution, bunch length,
displacement etc). From these one obtains corresponding wake potentials, effective
impedances, loss factors. Free parameters should be determined from results of
numerical calculations and checked with bench or machine measurements.
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The SPEAR Impedance Model

Historically, first model was SPEAR impedance, obtained from measurements of
parameters of short bunches in a particular machine. Frequency dependence of real part
of longitudinal impedance fitted with simple power law w®. For short bunches,
exponent was a = —0.68 = 2/3, from variation of bunch length with & 1/(2+a)

£ =aelp/ I/SQE 18 ‘scaling parameter’, & momentum compaction factor, e unit charge,

I, bunch current, s synchrotron tune, FZ beam energy.

—— Re Z(x)/R1
--- approximation

Figure 1: The SPE AR impedance model.

Bruno Zotter,

page ¢



BB Impedance Models February 8, 200(

The high frequency part of the (longitudinal) impedance is:

w \¢ _ 2
Z(w)=Rs | — with a~ —= for w>wi. (1)
w1 3
At low frequencies, however, the impedance is mainly inductive Z = jRsw/wi, the

parameter a 1s close to unity. This yields the expected dependence of bunch length on

1/3
current o ~ Ib/ i

In addition to the resistance R one has to determine the frequency wi where the two
expressions change over. Measuring the dependence of the loss factor on bunch length
at various energies and synchrotron tunes, it was found that R; =9 KQ and w1 = 1.3
GHz best describes the impedance of SPE AR, shown in Fig. 1. Although this model
could be adjusted for other machines, it was often used indiscriminately with
parameters valid only for S PE AR. The non-integer power law makes analytic
calculations difficult,
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The Broad-Band Resonator Model

More satisfying is the broad-band resonator model shown in Fig. 2, normalised by Rj.

Figure 2: Normalised impedance of resonators with various quality factors.

It consists of a single expression, valid for all frequencies:

R
ST s oy

3 parameters: shunt impedance R, resonant frequency w, and quality factor Q.
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BB Resonator Model (2)

Main attraction of this model impedance:

analytic evaluation of many expressions in
closed form.

decompose quadratic denominator by partial
fractions:

wrwl/jQ R Wy

Z(w) =

w? — jwrw/Q — w2 jQ (w—wi)(w — w2)
(1)
w12 complex roots of quadratic denominator.

With modified quality factor Q. = \/Q? — 1/4

W12 = % (—% + Q;) . (2)
. R w1 w9
Z(w)"‘ 2]er,~ l:w_wl _w_w2] ) (3)

Q,. real for @ > 1/2, then wy = —wy,

0-0



For @ < 1/2: @ imaginary, also roots of
denominator purely imaginary:

Wi,z = —“j% (% + Q”) : (4)

where Q" = 1/1/4 — Q2 real for Q < 1/2, but

w2 no longer complex conjugate of —wq .

Even simpler decomposition for “reduced impedance”:

2|,
Ao

Similar decomposition for transverse impedance
A 1 X A / n.

Ww—w; W — Wy

woR{ 1 1 ] (5)



Wake function: Fourier transform of impedance

> dw

Wi(r) = / —Z(w) exp jwT . (6)

oo 2T

For 7 > 0: close integration path in upper half
plane of complex frequency, where exp (jwr) —
0 when 7 — o0, use residuum theorem:

B R
T2
- Wake function vanishes for 7 < 0 since con-

tour must be closed in lower halfplane where
impedance has no poles. For 7 > 0:

W(r)

(w1 exp jwiT — we exp jwat] (7)

Wy T

G(r) = wTQRS e_ 2Q) cos(w!.T) —

1
2Qr,

sin(w,.7)|

(8)
where w). = w,Q./Q). Transverse wake function
even simpler, only a sine term.
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The reduced longitudinal impedance Z/n, where n = w/wq, proportional also to the
transverse impedance, is shown in Fig. 3 normalised by (Z/n)g = (wo/wr)(Rs/Qr).

I nn

2.5
X=w /w1

Figure 3: Reduced impedance of resonators with various quality factors.

At low frequencies, the real part of the resonator impedance depends quadratically on

frequency, Re Z ~ Rsw?/Q?w?, while the imaginary part is linear: Im

Z ~ Rsw/Qrwr. The absolute value | Z/n| approaches the constant value (Z/n)og.
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At high frequencies, the real part tends towards w2 Rs /w?Q?2, i.e. it falls off with the
inverse square of frequency (the imaginary part falls off only with the inverse first
power). The fast decrease of the real part does not correspond to the expected
asymptotic behaviour of a cavity impedance, whose real and imaginary parts fall only
with the square root of frequency, nor to that of a periodic structure, where the real part
should fall off with a 3/2 power. For very short bunches, for which the high-frequency
part of the impedance is important, one may thus obtain too low estimates of stability
limits and energy loss.

The main attraction of the resonator model impedance is that it permits analytic
evaluation of many expressions in closed form, in particular since the quadratic
denominator can be decomposed to linear ones by partial fractions. The longitudinal
wake function becomes:

G(r) = “’QQRS cos(wy7) -

T

1
2Q7,

where w!. = wrQ/Qr and Q" = 1/ Q2 — 1/4. The transverse wake function is

even simpler and has only a sine term, cf. Eq. (3.24). Both (normalized) wake functions

sin(wfm)} exp (—— ;JC;T) , (3)

are shown in Fig. 4.
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Inonn

GL(z)
Longitudinal Wake Transverse Wake

z 5 : ' : 1 2 3
Z=wqt z=w1t

Figure 4: Normalised longitudinal and transverse wake functions of broad-band res-
onators with various quality factors.

This model also permits explicit evaluation of loss factors for Gaussian. However, the

resulting decrease with the third power of the bunch length does not agree with

experiment nor numerical calculations for cavities, where the loss factors fall
exponentially. Hence several other impedance models were suggested.
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Improved BB Model for Periodic Structures

There exist pairs of Fourier transforms with explicit expressions for the wake function
in time domain, and the desired asymptotic dependence of the impedance in frequency
domain. For a periodic structure, the real part of the longitudinal impedance decreases
with frequency as w—3/2. A suitable candidate for the wake function is the
complementary error function erfc(z) = 1 - erf(z), with argument proportional to square
root of time delay 2z = /w17 (w1 free parameter). In order to make the real part vanish
at zero frequency, we subtract a term to make the integral over all z equal to zero. An
exponential will not change asymptotic behaviour of impedance, as it corresponds to an
impedance whose real part decreases as w2 and thus vanishes faster than the main
term. With a second free parameter wa, or rather the ratio a = wo /w1, the wake
function for “model 1A” can be written:

G(1) = w1 Rs [2 erfc(y/w1T) — aexp (—a\/m)} 4)

for 7 > 0, while it vanishes for 7 < 0 as shown in Fig. 5, together with wake function
for model 1B, for various values of the parameter .
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Wake Function G(z)
Impedance Model 1A

Wake Function G(z)
Impedance Model 1B

B

Figure 5: Normalised wake functions for model impedances 1A and 1B.

With £ = w/w1y and uw = v/x2 + 1, the corresponding impedance is:

—

1 2 2
Re Z(x) — “
u

u—l—l—a:Q—I—on

ImZ(x)

as shown in Fig. 6 for several values of & = wy /w1.
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The frequencies w1, w2 and the shunt impedance R are free parameters which can be
chosen to fit the impedance of a particular structure.

Impedance Model 1A Impedance Model 1A
Re Z(x)/R ’ Im Z(x)/R

X=w /w1

Figure 6: Real and imaginary parts for normalised impedance model 1A.

The asymptotic behaviour of the impedance is then given by:
3
ReZ(z) ~x 2, Im Z(x) ~

2 — o

- T

agrees with impedance of infinite periodic cavity array.
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The expansion of the impedance at low frequencies is

Re Z(z) ~ (i—g> 2, ImZ(z)~ (i—§)x. (7)

a2 a? 4

The impedance increases as w?, which gives a too slow decrease of loss factor for long
Gaussian bunches, proportional to o —3 as for resonator model. Improved by choosing

o = 4/5/8, for which value the impedance increases as w* and the loss factor

becomes proportional to o 5.
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Improved BB Model for a Cavity

The expected asymptotic behaviour of the real part of the impedance of a cavity is
w12 With z = \/w1T, a suitable wake function for 7 > 0 is:

G(r) = Rs {%W__;) . aexp(—az)] .

With £ = w/wj and u = v/ z2 + 1 the corresponding impedance becomes:

vu+1 a?
Vou  z24a? |’

Re Z(x) Rs

V2u z? 4+ a?

Im Z(z) ©)

_R. [\/u—l ox ] .

This impedance and its wake function, for several values of the parameter «, are shown
in Fig. 7. The expansion of this impedance at low frequencies is

87

ReZ(x) ~ (-2 — g) 2, ImZ(z) ~ ( . (10)
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Impedance Model 1B

Impedance Model 1B

X=w /w1

Figure 7: Real and imaginary parts of normalised impedance of model 1B.

The loss factor for a Gaussian bunch can be expressed analytically by parabolic
cylinder functions or modified Bessel functions of order 1/4. Since these are rather
unfamiliar, usually simpler to calculate it by numeric integration. Impedance and wake
function for several values of parameter « are shown in Fig. 7.
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Second BB Model for Periodic Structures

The models 1A and 1B describe asymptotic behaviour of impedance correctly, but give
a too slow decrease of loss factor with bunch length for long Gaussian bunches. As
shown in Fig. 8, the models 2A and 2B improve this by introducing a cut-off frequency
w1 which occurs also for realistic structures. This impedance is no longer given by
single expression for all frequencies.

3/2, such as for an infinite

For an asymptotic frequency dependence proportional to w ™
periodic array of cavities, one gets with x = w/wz:

)
0 for |z| < 1,

ReZ(z)=Rs{ +/|x| -1 (11)

. for x| > 1.

\

This function has a maximum at z = w /w1 = 4/3, and decreases as w~3/2 at high

Bruno Zotter,
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frequencies. Its Hilbert transform yields the imaginary part:
4
Vi+zrz—+v1—zxz—x forlz|<1,

(12)
Vit+z—=x for |x| > 1.

Im Z(z) = R—QS $

\

At low frequencies « < 1, the impedance is purely inductive Im Z/Rs ~ 3x/4 - the
real part is identically zero. The corresponding wake function can be expressed by
Fresnel functions, but is easier found by evaluating numerically the integral

2 [T Vz—1
G(y) = — / de Y2 S— COSTY . (13)
T/, T

This impedance and its wake function, as well as the one described in the following
subsection, are shown in Fig. 8.

Bruno Zotter, page 1”
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Impedance Models 2A+B
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Wake 2A
Wake 2B

Figure 8: Normalised impedances and wake functions for models 2A+B.
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Second BB Model for a Cavity

A similar model can be constructed for the impedance of a cavity, which tends

asymptotically towards w™ 1/2 For this case the impedance can be written:

Re Z(x) = Rs ¥

(

This function has a maximum at x = 2 and decreases as

0 for || < 1,

Vg — 1 (14)

, for|z|>1.
||

—1/2 at high frequencies.

The expression for the imaginary part becomes:

(

R

ImZ(x) =

\

2—V1i+z—+1—x for|z|<1,

2 —

1+ for |x| > 1.

The loss factor is obtained by integration of product of real part of impedance and

charge distribution of bunch. For long Gaussian bunches this yields exponential

decrease with bunch length, in agreement with numerical results.
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Composite Model

An impedance model consisting of the sum of expressions for its various elements has
been used to fit results of calculations and measurements of wakes in storage rings. This
model has two attractive features: firstly, each term of the impedance has a clear
physical meaning; secondly, the expressions for corresponding wake fields and loss
factors can be derived analytically, which simplifies the fitting procedure to obtain the
model parameters. However, the model diverges at low frequencies and needs to be
supplemented by a cutoff.

The suggested expression for the longitudinal impedance is:

1 + j sign(w)

VIl

The model has 4 terms: the first one represents a low-frequency inductance, typical for

(16)

Z(w) =jwL + Rs + B[l — ] sign(w)} \/m—{—A

shallow structures on accelerator vacuum chambers such as smooth tapers, bellows,
vacuum ports, slots, collimators, etc. For small discontinuities the character remains
inductive up to rather high frequencies.

Bruno Zotter,
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e g g
0w
o

Figure 9: Real and imaginary parts of impedance for composite model.

The longitudinal wake potential of a Gaussian bunch with rms length o = o5 /c is:

. L 2
We(r) = Sl exp S (17)
202
It is an odd function of time delay 7, hence loss factor of Gaussian bunch is identically
zero. The wake function has extrema at 7 = 4o of magnitude W4 = L /V2mo?.
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The second term in Eq. (16) is resistive. For a Gaussian it yields a wake potential:

R(yy— B T
W (1) = Nz exp( 202) : (18)

Such a wake is produced by cavities for bunch lengths comparable to the beam pipe
radius. The corresponding loss factor is:

R
= . 19
(o) = 5 (19)
The third term in Eq. (16) describes impedance due to the finite wall resistivity. The
corresponding wake potential can be expressed in terms of modified Bessel functions

I, of fractional order v and argument n = (7/20)?:

T™Ww ‘3/2 . .
W (r) = B |1 ()= Iy () I_y (o) + sign(r)3 (n)] &7 (20)

|T

The loss factor of a Gaussian bunch of length o becomes:

I'(3/4)

Ky (U) =B ong3/2

21)

where I'(3/4) ~ 1.2254.

Bruno Zotter, page 2.
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The last term in Eq.(16) has the same high frequency dependence as the impedance of a

single cavity. Its wake potential is given by:

viii

W eav (7_) — A_zT I:I% (77) + Sign('r)l_%(n)} e M ’

and the corresponding loss factor becomes:

I'(1/4)

’{u(a) = A omg3/2

where I'(1/4) ~ 3.6256.

The four parameters of the model A, B, L, Rs can be obtained by fitting the wake
function W (1) or the loss factor k, (o) to values obtained either numerically or by
measurements. The behaviour of this impedance is illustrated in Fig. 9 for several

values of the parameter A, which is a coefficient of the cavity term, while all other

parameters are set to unity.
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Modified Inductance Model

Recently a model was designed to represent an inductive impedance at low frequencies,
but with a non-vanishing loss factor there. The model has w~1/2 dependence at
high-frequencies. Its two free parameters L and 71" are determined by fitting to
numerically computed data:

B JwlL
(1 +jwT)3/2°

Z(w) (24)

The real and imaginary parts of this impedance, normalised by L /T are shown in
Fig. 10. The corresponding wake function can be obtained explicitly by integration:

.
0 forT <0,

G(T) = = « exp(—1/T) (25)
\/m(l o /T forT > 0.

In the limit 7 — O this function tends to the inductive wake G(7) = Lé'(7). The
parameter L is the total ring inductance found by summing the contributions of all
elements. The inductance of each of them can be estimated numerically with the help of
various existing codes.
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Figure 10: Normalised impedance of modified inductance model.

The second parameter, 7", the inverse of cut-off frequency of vacuum chamber, can be

found from loss factor. For long bunches, T' < o, it can be written:

Ky (o) = i . (26)

8y/mo3
One can also find explicit expressions for corresponding transverse impedances and
wake functions of this model.
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