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By means of a general theory we re-examine the coaxial wire
method of measurement of the longitudinal coupling of a vacuum
chamber components. We discuss the validity limits of the method
in relation to the presence of the central wire that simulates the
beam.



I. INTRODUCTION

The longitudinal coupling impedance (LCI) of an ultra-relativistic point charge g
travelling along the z axis of a beam pipe is defined as [1]:
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where E; is the Fourier transform of the electric field scattered by the discontinuities of
the pipe and k; = w/c. The impedance of a generic component is often measured by
means of the transmission S-parameter of a coaxial line obtained inserting a thin central
wire. This method, which allows measuring Z(w) with a simple bench measurements
equipment, has been proposed in 70's on the ground of intuitive considerations. The
basic idea is that the relativistic beam fields in the vacuum chamber can be simulated by
means of a TEM wave propagating thanks to the presence of the wire [2,3,4]. Several
formulae have been proposed to express the LCI as function of the above-mentioned
transmission S-parameter. The first in order of time is the so-called relation of Sands
and Rees suggested for the estimate of Z(w) when the wire radius is very small [5]:
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SflU T being the transmission parameter of the component under test, SzlffF the parameter

of a portion of unperturbed coaxial line of the same length, and R, =/Zoln(%) the

characteristic impedance of the transmission line.

An improved expression valid for a single lumped impedance which is exact in
the frame of the transmission line S-parameters, has been provided by Hahn and
Pedersen [6]:
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Other equations have been proposed for distributed impedances [7,8] for which
the formula (3) breaks down.



Since the presence of the wire on the axis strongly affects the fields, it has been
for long time discussed to which extent this technique is able to measure the impedance
defined in eq.(1). A detailed analysis of the validity of the coaxial wire method, for
azimuthally symmetric geometry, has been provided by Gluckstern and Li [9], who
showed that the difference between (1) and (3) is of the order of ln'l(%).

Aim of this paper is to treat the problem from a more general point of wiev,
confirming the validity of (3) independently of the shape of the test device. We use only
the Schelkunoff's Field Equivalence Principle and the Lorentz Reciprocity Theorem.

II. LONGITUDINAL COUPLING IMPEDANCE BELOW CUTOFF

Let us consider an infinite beam pipe with a circular cross section of radius » and
perfectly conducting walls. In the cylindrical system (r,,z) a point charge g moves with
velocity v =zci, along z axis which coincides with the pipe axis. In the frequency
domain, it has a spectrum given by:

J (r.zw) = +612(mr) +Jk°”1 4

and electromagnetic fields E“q* and flq* on the pipe walls given by:
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where Z, is the characteristic impedance of the vacuum.

Let us consider on the conducting wall an aperture S, which can in general be
coupled to an external structure. In order to account for the fields scattered by the
aperture, we make use of the Schelkunoff’s Field Equivalence Principle: a system of
equivalent magnetic currents J,,, is placed on the aperture surface § 4 and a perfectly
conducting wall is introduced at an infinitesimal distance from these sources. These
virtual currents are related to the electric field on the aperture E, by means of the
equation:
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Then, the electromagnetic field into the waveguide can be written as:
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where E; and H; are the fields scattered by the aperture, i.e. the fields radiated by the
surface currents J,, inside the pipe.

In order to calculate the LCI as function of the magnetic currents J,,; [10,11] we
apply the Lorentz Reciprocity Theorem which relates the field Ej,H, generated by the
electrical J,; and magnetic J,; currents, in a volume V bounded by a closed surface S,
to the fields E,,H, generated in the same volume by the sources J,, and J,,:
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or alternately:
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In the relation (10) we choose the volume V (Fig.1) bounded by the perfectly
conducting walls of the pipe, and the two cross-sections S; and S, , on both sides of the
aperture, and the following fields:




FIG.1. Volume V into the beam pipe.

1) E;,H; generated by the source J;;
2) E;,H, generated by the surface currents J,

Thus we obtain the following relation:
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Below the cut-off of the beam pipe, the fields E; and H, vanish exponentially for
z—> =». Therefore, moving the cross sections S; and §, to -~ and to +« respectively,
the integrals at the left-hand side of the equation (12) vanish, and we get:
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Recalling the definition (1) of the LCI, we can write:
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We remark that the above equation is valid, below cut-off, for any shape of the
aperture and of the external structure coupled through the aperture.

I1I. BEAM SIMULATED BY A WIRE



We assume, now, that in the same pipe a perfectly conducting wire of radius a is
stretched along the z axis. The beam pipe so modified becomes a transmission line. In
this new configuration, we consider a generator which excites a TEM wave E'*,fl,}*

such as to reproduce the fields E;’ ,ﬁ; of a point charge ¢ in the unperturbed

waveguide:
By - 28 sy (15)
Hy = Lo (16)

Calling, now, Ej the electric field on the aperture and J' . the equivalent
magnetic surface currents, we have:
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The electromagnetic field inside the coaxial line can be expressed by the relations:

E' =E} +E; (18)
H' = H;' + H| (19)

where E; and E; are the fields scattered by the aperture.

Below the cut-off frequency of the mode TE;; of the coaxial line, the fields E;
and H, at a sufficient distance from the aperture can be represented by means of the
TEM components E;”,H;~ (backward) and E;*, H.* (forward):
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FIG. 2. Volume V; into the coaxial line.

The coefficients a* and o~ can be obtained by using again the Lorentz
Reciprocity Theorem according to eq.(10). The volume V; in Fig.2 is similar to V of
Fig.1, but for the surface Sy, enclosing the wire. Fora™, considering the backward TEM

wave E",l?":
m- _ 1 jkozs
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and the field E;,H; produced by the surface sources J,,,, we get the relation:
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By computing the integrals in the left-hand side we obtain:
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Analogously we get for a™:
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We observe that in case of vanishing wire radius, both a* and o~ tend to zero,
because of the divergence of the logarithmic factor.

IV. IMPEDANCE FOR A SMALL BUT FINITE RADIUS OF THE
WIRE

We apply twice the Reciprocity Theorem choosing the volumes V; (Fig.2), inside the

pipe, and V, (Fig.3), outside the pipe, and assuming as sources of the fields the currents
(Jins>Jms) in Vy and (=J}5,=T o) in V.
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FIG.3. Volume V, outside the beam pipe.

We get for V;:
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and for V,:

f(ExH’ +E” xH) dS = —ffH Jras- [ A" -J. ds 28)
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Sv, is the surface that encloses the volume V, wherein -J,,, and -J;,, produce the

2
electromagnetic fields (E,H) and (E',H); §{ and S} are two cross sections of the coaxial
line and Sy, is the surface enfolding the wire.

Considering the magnetic fields # and A given by eq.(9) and eq.(19), the

relation (28) can be rewritten, dividing by 1/4%, as:
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Z(w) = mesqpe”“’zdS (30)

Furthermore, we observe that, under the following conditions:

1) thin wire,

2) wavelenght much greater than the longitudinal dimension of the aperture,

3) wavelenght much greater than the the cut-off wavelenght of the first higher-order
mode excited by J,,,

the equation (27) becomes (Appendix A):

1 [ = k- ~ .k 1 Z(w)Z'*(w)
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and consequently the relation (29) changes into:
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Now, if the radius a of the central conductor is very small, the eigen-values and
the eigen-functions of the coaxial line approach the circular waveguide ones (Appendix
B) and, then, J,, ~J, and (E'H’)~(E i). Replacing into the flux through Sy, in
eq.(32) (E,H) with (E',H') we obtain the following expression:
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Using the Poynting Theorem in the volume V, as in the previous subsection with
the current -J;,; as source, we get:
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On the other side, for the beam pipe with the wire along the axis, when the coupling
apertures are much smaller than the wavelength:

a =-Q 35)
and we get:
r ., - 1 8.7r2Rola+|2
Relfst’ *ImsdS | = _—?{_ (36)
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Therefore, the equation (34) becomes:

. 7™ (0)Z ()
Z(w)+ Z' (w)- ——g%(i) =2Re[Z'(w)]- lz—(l-%i (37)

Solving the above linear system for the unknowns Re[Z(w)] and Im[Z(w)] we get:
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which can be expressed by means of the transmission S-parameters as (Appendix C):

Z(w) =
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Neglecting the term of second order into the square brackets, the above equation can be
rewritten as:
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When |Irr{a+]<<|qZO/2n +Re[a+], the relation (39) tends to the Hahn and

Pedersen formula (3).
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V. COMPARISON WITH THE EXPERIMENTAL DATA

We performed measurements with the coaxial wire method on a prototype of
cylindrical beam pipe coupled by means of four slots to an external coaxial cavity [12].
The results are shown in Fig.4. We observe that the curve representing the eq.(39),
obtained replacing (E,H) with (E',H’), and the Hahn-Pedersen relation (3) are
indistinguisheble.

-——— Hahn Pedersen

- Equation (39) I
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FIG.4. Real part of the impedance calculated using the Hahn and Pedersen
formula and the eq.(39).

VI. CONCLUSIONS

In this paper we have given a theoretical proof of the coaxial wire method for
lumped impedances, used in the bench measurements of the coupling impedance, in the
limit of low frequency but for any shape of the test device. Using the Equivalence
Principle and the Reciprocity Theorem, we have derived an approximate expression
which take into account the presence of the wire. For a real measurement set-up, with a
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thin coaxial wire, this one tends to the well-known Hahn and Pedersen formula derived
in the frame of the S-parameters of a transmission line.
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APPENDIX A

Let us consider the equation (33). Moving §{ and S} to -» and +» respectively,
and exploiting the vectorial property:

-

EgxHy -dS=-E;xH. -idS=i, x H -E,dS (A1)
we obtain the relation:

J[HS TsdS + [[Hy JynsdS = = ([ x By - Egds (A2)
Sa S Sw :

where Sy is the whole wire surface.
We assume that when the wire radius a is very small:

Es(r =a,Q,7)~ ES (r=0,2) (A3)

and neglecting the contributions of the evanescent modes and recalling the equation
(21), we can express the vector product /, x H." in (A2) on the wire surface as:
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where u(z) is the step function.

We observe, at last, that, if the longitudinal dimension of the aperture, centered,
for convenience, on z=0, is very small compared with the wavelength, the equation
(46) becomes true and the right-hand side of the equation (A1), divided by i/ q2 , may be
rewritten as follows:

2na+* [0 e ]
Zog {f E; (r=0,2)e -k O dz + sz(r-O z)e’kozdzjl (A5)

Now, adding and subtracting the quantity

0
fESZ(r = OaZ)eJkozdz (A6)

inside the square brackets, recalling the expressions (1) and (27), and taking into
account that the field E. is an even function of z [13], the (A5) becomes:

4% 400
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Now we note that E,(r = 0,2) is significantly different from zero only in a narrow
interval around z=0, being the electric scattered field E; evanescent below the pipe
cutoff. Then, if the wavelength is much longer than the cutoff wavelength of the first
higher-order mode excited by the surface sources J,,, then, the function sin(k,k) may
be considered nearly zero in the interval above-mentioned and the integral between +
and -~ negligible. Hence the equation (A2) becomes:

[ ] *
1 ~ x = ~ = X Z(w)Z (w)
3| [[Hs *ImsdS + [[Hy  JppdS | = - (A8)
W i BT
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APPENDIX B

Let us consider a coaxial line of outer radius b and inner radius a with perfectly
conducting walls. We want to study the behaviour of the higher-order modes when
a—0.

In order to do that, we solve, on the transverse plane, separating the variables, the
two Helmbholtz's equation for TE and for TM modes respectively. The solutions can be
expressed as linear combination of Bessel's functions of first and second kind:

Bl‘]n(kt’r)"'BZYn(kt’r) (B1)

where B and B, are two constants and , are the eigenvalues of the problem.

Then, applying the boundary conditions, we get, in the case of TE modes, the
characteristic equation:

I (aky )Yy, (bki) = Jy(bki)Yy(aki) = O (B2)
Dividing by Y, (bk,)Y;(ak;), we obtain:

Ja(bky) _ Ja(ak))
Yy(bki) Y (ak)) B3)

For vanishing radius a the RHS ratio tends to zero. In fact, while J)(ak;)
converges to a finite value, Y, (ak;) diverges. Then, the equation (B3) becomes:

Jp (bky) = 0 (B4)

This is the characteristic equation of the circular waveguide, whose the
eigenvalues %, tend to the corresponding , of the structure simply connected.
Furthermore, it’s possible to prove that:

Iyak) By N
Yi(ak) B (B3)
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Hence, we have that, as a — 0, the coefficient of the Bessel’s function of second
kind in eq. (B1) disappears. In conclusion, we can say that the modes TE of the coaxial
line tend to the homologous modes of the circular waveguide.

Now, proceeding in a similar manner, for the TM modes we obtain the following
characteristic equation:

J, (ak,')Yn (bk,') - Jn(bk,')Y,,(ak,’) =0 (B6)
and, then, the relation:

Jn(bki) _Jpak)) By
Y,(bk/) Y,(ak)) B, (B7)

Since J, (ak;) tends to a finite value, when a approach zero, and Y, (ak;) diverges,
we have that the eigenvalues and the eigenfunctions of the coaxial line converge to the
homologous quantities of the circular waveguide. _

At this point, we want to focus our attention to the convergence of the coaxial line
TM, ,, eigenfunctions to the homologous solutions of the waveguide. In order to do that,

we fix the outer radius b equal to 0,05 m and we consider the following different values
for the inner radius a.:

a = 10> m a, = 107%m az = 107 m as = 107 m
Afterwards, we'll limit our analysis to the TM,,; mode, supposing that its behavior
should be representative of all the TM,, .
Then, we can calculate, solving the equation (BS5), the eigenvalues kjo, of the
coaxial line in relation to the different radius @ and the eigenvalue ko, of the circular

waveguide whit radius b = 0.05 m. The values founded, reported in Fig.5, satisfy the
property of convergence above discussed.
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FIG.S. Eigenvalue of the TM,;; mode for the wire radius a. Corresponding to a, we

have indicated the eigenvalue of the cylindrical waveguide.

Now, we compare the radial behavior of the longitudinal electric field in coaxial
line with the same field component in the circular waveguide. In Fig.6 we have
represented the function

(B8)

for the different value of the wire radius and the function
Jo (ktO,lr) (B9)

for the simply connected pipe. We observe that, when a s 10™*m , the field of the coaxial
line, close to the external walls of the pipe, approaches the field of the circular
waveguide while the electromagnetic field is modified only in a narrow region around
the wire.
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FIG.6. Radial behaviour of the TM,; mode longitudinal electric field ¢, for different
value of the wire radius:
A-a=q B-a=a, C-a=a, D-a=a,
The curve E represent the field e, in the cylindrical waveguide.

APPENDIX C

Comparing (30) with (25) it's readily found that:

Z(w) = 2L D)
94y [2x

Moreover, since the coaxial structure of Fig.2 is as a two-port network, it's
possible to express the right-hand side of the equation (C1) by means of the circuital S-
parameters. In fact, if the output line is terminated on a matched load and we use a
matched generator producing the same fields (15) and (16), the transmission parameter

of the Scattering Matrix™ is given by:

* Notice the different meaning of + and - for the scattering parameters, the sign + means incident waves on the device ports.
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where [ =275 - 7. '
We remind that for a coaxial line of length /, the transmission parameter is given by:

Saat = g~ Iho! C3)

thus, from (C1), (C2) and (C3) we obtain:

SREF _ gDUT
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, J T 221
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\ &
and readily eq.(39) from eq.(38).
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