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Observation and Analysis of Transverse Single Bunch
Threshold Behaviour at Positive Chromaticities
(G. Besnier, Ph. Kernel, R. Nagaoka, and J.L. Revol)
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Nonlinear rise of threshold current with Large shifts of head-tail frequencies with
increasing & > 0. increasing & > 0.

- Pushing &y towards larger positive values increases the threshold

current (how 15 mA is achieved for User Operations).
- However, feedback efficiency is significantly reduced.
- Peak betatron tunes are shifted many synchrotron sidebands away (Jm| < 10).
- The beam is apparently unstable and blown up.
- &y too large creates lifetime problems.

To understand the physics of & > 0 regime
(i.e. what determines Iy;) = Main goal of the study

=> Both experimental and theoretical studies carried out
(Numerical studies with tracking and mode-matrix calculations).



- Observation and Analysis of Transverse Single Bunch Threshold Behaviour at E>0 24

Q Tracking computation reproduces correctly the threshold curve with
the obtained BBR model, provided that a damping time (= 0.2 ms)
much shorter than the radiation damping (7 ms), even shorter than the
synchrotron period (0.5 ms) is assumed.

Q Our initial picture was a successive interaction of higher-order head-
tail modes with the peak negative resistivity (around -22 GHz).

O However, a question arose if the notion of “head-tail modes” is still
valid when T/t > 1, if head-tail modes as high as |m| ~ 10 can drive

such a strong instability, and also why such a fast growth can develop.

Q Solution of the most general equation for head-tail motions
(Eq. 195 of “Bunched Beam Coherent Instabilities” by J.L. Laclare)
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In which, a beam harmonic is
coupled to all other beam harmonics (...bunched beam nature)
and composed of all possible head-tail modes.
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Q Some experimental evidence:
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Observation of spontaneous head-tail frequencies as a function of the RF
voltage V1.

= Appearance of neighbouring mode frequencies as the instability is
enhanced with an increase of Vif(8 2> 10 MV).

U

Q Both experimental and numerical results suggest that the current
threshold in § > O nonlinearly approaches a regime where the growth
time is comparable to or shorter than the synchrotron period.
> A mode-merging like instability initially develops among
neighbouring modes.

-> All head-tail modes finally contribute to a highly excited bunch
State.

=> The concept of head-tail motions is lost.

This regime is tentatively named as a “post head-tail regime”.
(This idea was firstly proposed by G. Besnier within the group)
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Q In the literature one finds a study with a similar motivation being
already made by R.D. Ruth and J.M. Wang.
(R.D. Ruth and J M. Wang, “Vertical Fast Blow-up in a Single Bunch”, IEEE
Transactions on Nuclear Science, NS-28, No. 3, June 1982)

From the previous most general coupled-equation, they approximately
_ derived a dispersion relation similar to that of the coasting beam theory,
describing the fast blow up of the beam:
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O An independent derivation of a similar constraint has recently been
carried out by G. Besnier, including attempts to introduce a stability
criteria.
= Justification of the results are underway.
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Some Beam-Based
Broadband Impedance Characterisation at the ESRF

Q Longitudinal broadband impedance fitted with the BBR model with

Vertioal Tune

the bunch lengthening data (Cecile Limborg et al. 1996):
Jres =30 GHz, Rg=42kQ, 0=1

(cf. Corresponds to |Z;/n|p = 0.5 Q,
while a fit with the pure inductive model gives 1.5 Q)

Vertical broadband impedance fitted with the BBR model with the
mode-merging instability
(G. Besnier, Ph. Kernel, R. Nagaoka and J.L. Revol, 1997):
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Sres=22GHz, RrB=13MQ, Q=1

By requiring [Z;(w)lgpr and [Z7(w))ggR to satisfy
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[Z7(0)]gpr = A — at zero frequency,
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d = [RE. Rs 1"? = 5,3mm is found (in a reasonable range).
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Q From the vertical resistive-wall instability threshold in the uniform

filling, decomposition of resistive-wall and BBR is attempted
(R. Nagaoka, J.L. Revol, J. Jacob and T. Guenzel).
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The threshold at zero chromaticity is not sensitive to BBR.
= b =8 mm is deduced.

This is in good agreement with beg = 7.3 mm, obtained from evaluation
of resistive-wall components from the low-gap ID vessels

However, with the resistive-wall impedance alone, there is a large
underestimation of the measured threshold curve.
=> Suggests a siginificant stabilisation due to BB-impedance.

BBR was introduced, keeping its f.; fixed to 22 GHz as found from the

mode-merging instability and fitting R with Q=1.

= R = 6.8 MQ is deduced.

= The reduced shunt impedance R is in favour of other single bunch
observations.
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Q The obtained combination of BBR+RW from the multibunch threshold
is applied to mode-merging calculation:

Mede-merging: Descriptien with RW and BBR
(GdV=9, Vri=9 MV, No bunch lengthening)
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=> A rather good reproduction resulted. It suggests a non-negligible
contribution of the RW impedance to the single bunch detuning.

R1/Q ~ 2 MQ/m (Byp ~ 3.3 m) is nearly three orders of magnitude larger

than the zero frequency inductance evaluated for an ID low-gap taper.
= Does this mean that ID tapers are not the major contributors?

Evolution of mode O detuning with installation of ID low gap vessels in
Elertra seems to contradict with this hypothesis.
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(P. Kernel, R. Nagaoka, J.L. Revol, and L. Tosi, ESRF-ELETTRA collabo, July99)

= Could it mean that BBR model with Q=1 is not appropriate?
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Observation of Resistive-Wall Effects at the ESRF
(J.L. Revol, R. Nagaoka, J. Jacob and E. Plouviez)

Q Multibunch operation at the ESRF is affected by the resistive-wall

instabilities. Chromaticities must be shifted to positive to suppress the
instability. Threshold current with £y=0 is only ~10 mA in the uniform

- filling.
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Influence of the instability on the vertical emittance in the uniform filling.
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Q Experiments performed showed a distinct stabilising effect to exist in
other filling modes (1/3, 2*1/3, 2/3 filling etc.).
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Vertical emittance versus chromaticity for a fixed current.
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Vertical emittance versus chromaticity for a fixed current.

= It appears that “beam gaps™ help to give significant stabilisation (i.e.
multibunch nature). However, a single bunch effect seems to become
important at higher currents.
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Q Large incoherent betatron tune shifts observed since long are
suspected to come from an asymmetry of resistive wall chamber cross

sections. v_

(cf. “Coupling Impedance of Beam Pipes of General Cross Section”, R. Gluckstern and J. van
Zeijts, CERN SL/AP 92-25,

“Resistive Wall Impedance of Beam Pipes of General Cross Section”, K. Yokoya, Part. Accel. 41,
1993, p.221)

Observed Multibunch Detunings
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Q It was also observed that a beam filling without any gap and with
current modulation (i.e. “modulated uniform’) gives more stability than
partial fillings.

Comparison at 50 mA, Vif = 12 MV
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=> An idea arose if the observed stabilisation is due to an intra-beam
tune spread arising from the current dependent tune shift.
= Quantification of this effect is on the way (R. Nagaoka et al).



