Wake Fields Effects due to Surface
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The problem of the wake field generated by a relativistic particle trav-
elling in a long beam tube with rough surface has been revisited by means
of a standard theory based on the hybrid modes excited in a periodical-
ly corrugated waveguide. Slow waves synchronous with the particle can
be excited in the structure, producing wake fields whose frequency and
amplitude depend on the depth of the corrugation.



1 Historical review

e K.LL.F.Bane, C.K.Ng, and A.W.Chao, ” Estimate Impedance Due

to Wall Surface Roughness”, SLAC-PUB-7514 (1997) and PAC’97,
Vancouver, Canada.

In machine with short bunches, the surface roughness may be a ma-
jor source of wakefields which might significantly increase the beam
emittance and the energy spread. They estimated the low frequency
Impedance due to wall surface roughness.

e KA. Novokhatski and A. Mosnier, ” Wakefields of Short Bunches
in the Canal Covered with thin Dielectric Layer”, PAC’97, Vancouver,
Canada.

e KA. Novokhatski, M. Timm and T. Weiland, ”The Surface
Roughness Wake Field Effect”, Proceedings of the IACP’98

The monopole wake fields of a waveguide with a rough surface behave
in the same way as those inside a waveguide with a dielectric layer.
Through time-domain simulations, they find a longitudinal wake func-
tion:
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cos (2w fi7) H(7) (1)

which might be could be cause of emittance degradation in the TESLA-
FEL, and in LCLS.

In our work we review the problem of the wakefields produced by an
ultrarelativistic charge travelling inside a beam tube with a periodic cor-
rugation making use of a standard theory based on the Hybrid modes
propagating in the waveguide. The work has been develped with particular
regard to LHC beam pipe where, a corrugations has been proposed in order
to reduces the walls reflectivity.

A similar theory has been already used in the design of a wide band
pick-up for sthocastic cooling.



2 The Relevant Geometry

We assume t < L and neglect ohmic losses in the material.

Figure 1: Relevant geometry.
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Figure 2: Schematic view of the waveguide and notations adopted.




3 Homogeneous problem

Due to the rectangular geometry, the fields inside a single corrugation can
be written as

E{ = —jwpo Y  Bnsin[B, (/2 + h — y)] cos (kent) (2a)
ES =0 " (2b)
HS = 0 | (2¢)
HS = gz nB,sin [, (b/2 + h — y)] sin (ken) (2d)
H = -8, Z By, cos B (b/2 + h — y)] cos (kgnT) (2€)
where
Ba= (/) — k2, and ky =nr/a (3)

The fields of interest in the internal region of the waveguide can be
derived from the only magnetic Hertz potential IT,, = £I1,:

E = —jwuV xII, (4a)
H = (k*+ VV)IL (4b)

I, = [Acos (kzz) + Bsin (k)] [C cos (ay) + Dsin (ay)] e =, (5)

where A, B, k;, B, and « are constants. The separability condition for
the wave number inside the waveguide can be written as:

B +a®+ kL, = (w/o)”. (6)
Applying the continuity of fields over the same boundary,i.e.

/

E=FE, and H;=H, for y=4b/2 (7)



we get

Brntan (Boh) = acot (ab/2). (8)
usually referred as dispersion equation.
To show the basic features of the solution, we study the case of square
waveguide and we plot the normalised propagation constant B,a as a func-
tion of a normalised frequency a/\ for the case h/b = 0.1
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Figure 3: (Color) Brilluion diagram for a square waveguide of side a with corrugation on two opposite faces
of depth h. The green curve is the propagation constant of the fundamental mode of the corresponding
smooth waveguide and the red line is the dispersion line of a relativistic beam.

It can be shown that for » < A, a and high energy particles (v = 00)
the crossing frequencies are:
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For very small h, the second term in the square root dominates resulting
in the typical behaviour o 1/v/h.
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The minimum frequency beyond which a mode can propagate in the
guide (namely its cut-off frequency f.) depends as well on the corrugation:

2
c nm\ 2 mm
(10)

mathematically they are found imposing the condition 8, = 0. In the limit
of h — 0, we find the well-known cut-off frequencies for modes of a smooth
waveguide. Only the waveguide cut-off with ( m = 0) does not depends on
h.

For small h/b we can write a formula of 3, as a function of the propa-
gation constant of the smooth waveguide, namely k:

~k, 4 2Pn
Be ks 5y tan (Bah). (12)

If the propagation constant of our hybrid mode falls in che region below
(above) the red line, the wave is usually referred as fast (slow) because its
phase velocity is bigger (smaller) than the light one. Moreover, g, for a
rough waveguide can exceed the wave number of the smooth one, meaning
that the solution « is purely imaginary. In that case the wave is told to
be a surface wave, because it is exponentially dumped in the y-direction.
Thus, only a surface wave can be also a slow one.




4 Including the sources

Once solved the homogeneous problem, the field generated by a point
charge can be found by means of the Lorentz reciprocity principle:

f(E,fo—ExH,f)-ndS:/J-E,fdv (12)
S |4

where J is the current density of a point charge travelling on axis (%,
unit vector along z-axis),

J(z,y, z;w) = q8(z)d(y)e 7573, (13)

In a rough waveguide the (hybrid) modes are nomore orthogonal, how-
ever the coupling itself goes to zero in the limit h — 0.

Moreover, only the modes synchronous with the beam can exchange
energy over an infinite interaction length (surfing effect). The electric field
shows a resonant behaviour around the crossing synchronous frequency:

The synchronism between the field in the waveguide and the beam is
possible because of the slowing effect due to the surface roughness.

For relativistic particles (y — co0) and small & (h < A) the electric field
at the lowest frequency (n =1) is

h 1 w b\ [sinh(7b/a) !
M ~y — 2 e — _—— —_—
E,(z,y, z;w) 47“ q Zy i tanh (2a) [ wb/a 1] X

cos (Ex) cosh (%y) e/ [§ (w]e — Ba)+6Ww/e + Ba)],

a

(14)

E, has a m phase difference with the charge (the - sign), meaning that

it is a decelerating field. The field is confinated in the waveguide region

near the corrugated wall (it is exsponentially growing for y — +b/2), as we

expect for a surface wave. Moreover it depends on the geometry of the pipe

(ab is the area the pipe cross section). The height of the corrugation fixes

not only the resonant frequency through f,1, but also the field amplitude
through the factor h/a.



5 Longitudinal coupling'impedance and wake function

The longitudinal coupling impedance per unit length is defined by:
07 (w) 1

——72=_"_F, — — jaw/c. 1
5ot = =B (2 = 0,y = 0,2,0) /5 (15)
we get
0Zw) 5. k1 7b\ [sinh(xb/a) 17"
ot —_—— h —_— _ 7 1
0z A Zo a ab tan (2 a) [ 7b/a % (16)

[0 (w/ec — Ba)+d(w/ec + Ba)]-

which is purely real. It is straightforward now to get the wake function for
unit length :

0z T J_oo 0z

aw('r) H(T) /mfty _‘?@ejwrdw (17)

where 7 is the time distance of the trailing charge from the leading one
and H(7) is the Heaviside function. We get

. -1
1 (1) [ ey -

= wy (a,b,h) cos(2rfi7) H(T).

(18)

The amplitude of the sinusoidal function for an LHC-like geometry (a =
3.6102m,b=2510"2m and h = 30 pm)is ~ 2V pC~1 m™L,



6 Transverse coupling impedance and wake function

To solve the transverse problem, differentely from the longitudinal situa-
tion, we consider the point charge moving off-axis, with a displacement ;.
Due to the new simmetry, we choose the first magnetic Hertz potential:

Ume1 = Z Ay cos (%ﬁw) cos (§ny) €795 p=13,... (19)
n

From Eq. (4), we derive the components of the electromagnetic field.
The boundary conditions at the walls lead to the following dispersion
equation:

B, tan(B,h) = —atan(ag) (20)

For h < b, the lowest dipole mode is the T Eyj, with a cut-off frequence
given by:

c nm 2 mr \? )
fe=+— (—) + with n=1 and m=0; (21)

2w a 2h+b
l.e.:
c
feao = o (22)
And the crossing frequence (where k = k), at:
oS g2y fen b
fn o k2, + . [tanh (kmz)] : (23)

Analogously to the longitudinal case, for very small h, the second term in
the square root dominates, and we find the typical behaviour o 1/v/h.
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Applying the Lorentz reciprocity principle (see Eq. (12)), the field gener-
ated by a point charge can be found. Now J is the current density of a
point charge travelling not along the z-axis:

J(z,y,z;w) = q8(z)5(y — yo)e 75" 2,; (24)

Approximating for relativistic particles and for small h and yg at the lowest
frequency (n=1), we find the transverse impedence per unit length, along

the y-axis:
sinh (2)])
0

8Zy(w) s, hiy b
9z = —47 ZO a%b tanh %

x [5 (% - &m) —5 (-E’E + f,m)] (25)

And the transverse wake function per unit length along the y-axis:

. -1
awy(T) _ g hfyo ﬂ'b Sinh (%b) .
5, = —472 Zye I tanh % — sin(wor) (26)
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Analogously to the rectangular waveguide, the problem in the circular one
can be studied using the Hertz potentials. The Hertz potential chosen is
the electrical potential along the z-axis:

I, = Z AnJo(ker)cos(ng)el @Wt—Fn?) (28)

where ], is the hybrid mode propagation constant in the circular waveguide
and k; is the transverse propagation constant.
The field components are found by Eq. (4):

ern = — By (ker) cos(ng) (292)
eon = §ByJn(kir) sin(ng) (29b)
e:n = ki (ker) cos(nep) (29c)
hyn = —juwe=Jn(kir) sin(ng) (29d)
hgn = —juwekeJ, (kyr) cos(ng) (29€)
Ao =0 (29f)

it is evident that it is a TM mode.
Applying the boundary conditions , the dispersion reletion is found to be:

Jn(k‘oa)}/n(kob) - Jn(kob)yn(koa) . &Jn(koa)
! (koa) Yy (kob) — Jn(kob)Y! (koa) ~ ko J.(kza)

where a is the inner radius and b the outer radius.

(30)
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From Eq. (30), for small h and n=0, the crossing frequence for the cir-
cular waveguide can be calculated:

w2 .

The field generated by a point charge can be found applying the Lorentz
reciprocity principle Eq. (12), where J is the current density of a point
charge travelling on axis (2, unit vector along z-axis),

J(r,¢,z;w)=q 5(r)5(¢)e_j73@52z”0; (32)

For relativistic particles and small h the elecrtic field at the lowest frequence
(n=0) is:

fe B g)rs(Lem)e

masd

From the definition Eq. (15), the longitudinal coupling impedence per unit
length is found to be:

0Z(w) _ Zoh [5 (%} B ﬂé) ny (% n ﬂé)] (34)

0z mas

and the longitudinal wake function per unit length:

Ow(r)  2Zghc
0z  mad

cos(wyT) (35)

with wy given by Eq. (31).
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8 Examples

We consider the simple case o a square waveguide, we get:

= 8T—— — tanh
0z 7ra2 a T

= wy (a, h) cos (2nfi7) H(T).

dw(r) Zoc h (71') [sinh (r) 1] -1 cos (2nFi7) H(r) =

(36)
Approximating the hyperbolic factors we have:
wo (a,h) =~ T2 L 9.6 107w ($> ; [V/pCm] (37)

The wake field has a resonant behaviour, and therefore can be expressed
in terms of the single charge loss factor and in terms of the (R/Q)ratio.

wr R
Qo

Wy (a, h) ~ = 2]60 (38)

with

— 3
wr = 27f1 ~ ¢4/ o (39)

which gives

3/2
—) . [Ohm/m] (40)



