Proposed Vibration Measurement Program In A Parallel Tunnel
Introduction

- **NLC Site Investigation Plan for Next Year**
 - Prepare an accurate and consistent cost comparison of all NLC representative sites (3-IL, 2-CA)
 - Identify the cost “delta” for cut and cover vs. tunneling construction methods for 2-CA sites (CA-135 vs. CA-127)

- **Goal; Reduce the Number of Sites for Concept Phase (CD-0)**

- **Trade-Off; Tunnel Provides a More Stable and or Quiet Environment (Insufficient data available)**

- **Trade-Study; Perform Vibration Measurement in a Parallel Tunnel**
Proposed Vibration Measurement

- Perform vibration measurement in a parallel tunnel constructed with a similar configuration and in a similar geological formation as CA-127 site.
- Intent, to obtain vibration data associated with:
 - Transmission of vibration from the surface to the tunnel floor; and
 - Vibration transmission from a parallel tunnel to the adjacent tunnel as well as along the tunnel.
Proposed Location; Vicinity Map

Alignment of the tunnels from Hollywood Blvd. To Universal City
Proposed Location; Geological Conditions

A cross-section through the Santa Monica mountains showing the different geological conditions. Reach 6 might be a potential test site.
Proposed Location; Access to Tunnels

Proposed Reach 6
Emergency Exit
Geological Information

- **Geologic conditions at Reach 6**
 - Upper Topanga Formation; Sandstone and shale has a shear wave velocity of between 3,000 and 4,000 ft/sec
 - Further south, sandstone with conglomerate imbedded shear wave velocity of between 4,800 and 7,800 ft/sec

- **Geologic conditions at CA-127 site**
 - Sites Formation; Sandstone with intervals of interbedded clay-stone and siltstone (shear wave velocity > 2500 ft/sec)
Typical Cross-Section of the MTA Tunnels
Typical Cross-Section of the MTA Tunnel

CA-127 proposed tunnel is similar in configuration
Purpose of This Vibration Measurement

- To provide data associated with:
 - Transmission of vibration from the surface to the tunnel floor:
 - Vibration transmission from a parallel tunnel at the same depth as the tunnel
 - Characterize the attenuation or amplification as a function of frequency, in another word;
 - Establish the Transfer Function (Frequency Response Function or FRF) between the “source” and the “receiver” for each case
Proposed Vibration Measurement

- Surface-to-depth measurement will be obtained using:
 - Traffic-as-source: It will measure the surface ambient and the tunnel simultaneously, using the excitation at surface (traffic, etc).
 - Data will be taken simultaneously over relatively long periods.
 - Impulsive-source: Measurement will use the same instrument setup, using a controlled source, such as instrumented hammer.
 - A “FRF” will be obtained, showing attenuation provided by ground (part of FRF is “coherence” measurement).
 - Rail-as-source: Same discussion as “Traffic-as-source”, except the source and receiver would be reversed in the computations.
 - Rationale: Small amount of traffic, not enough to get a signal with adequate coherence may be the case in the middle of the night (provides a check of the validity of measurement).
Proposed Vibration Measurement

- Tunnel-to-tunnel measurement will be obtained using:
 - **Electro-magnetic shaker**: It will generate steady-state vibration for frequency range from 2 Hz to 100Hz (frequency sweep) in “source” tunnel with sensors placed near and along the tunnel as well as in the adjacent tunnel.
 - **Impulsive-source**: Measurement will use the same instrument setup, using a controlled source, such as instrumented hammer.
 - Shaker and hammer will simulate broad range of vibration sources in the NLC service tunnel, such as activities, ventilation equipment, cooling water, modulator, pumps, etc.
 - A transfer function (FRF) will be obtained, showing attenuation or amplification of vibration between the tunnels.
DMJM and Colin Gorden & Associates (CG &A) Proposal

- Well known A & E firm with over 50 years experienced in major scientific project such as:
 - Lead A-E for the initial planning design and construction of FNAL
 - A-E for the design of Jefferson National Accelerator Lab. (Cebaf)
 - Engineering management consultant for Los Angeles Metro
 - The Red Line, 17-mile, twin-tunnel subway
- CG&A specialized in vibration and acoustic solutions for low-vibration facilities for the research and fabrication of integrated circuit
- Estimated cost to perform all the test, analyze and present the result in an acceptable format as well as all coordination and any permits; Not to exceed $60K
A Tentative Proposed Plan

- Refinement of the proposed measurement program;
 - Meeting with the DMJM and CG&A principals at SLAC next week (may be on May 30, 2002)
 - Discuss and refine the proposed vibration measurement program to meet the NLC vibration goals and needs
- Discuss the logistics and schedule to draft a Statement of Work
- Prepare and process the purchase order document by June 7, 2002
- Reconnaissance trip to the site (may be week of June 10, 2002)
- Measurement and processing locations as well as paths of cabling to be identified
- Meet with the LA MTA and DMJM to resolve the logistics as well as to get a feel for the train schedule and the traffic patterns
- Finalize the details of vibration measurement program