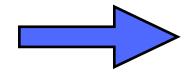
A New Analysis of Intrabeam Scattering Applied to KEK's ATF

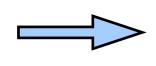
Boaz Nash, Juhao Wu, Karl Bane, Alex Chao SLAC

June 20, 2003


Overview

- Motivations
- New IBS analysis
- Explicit inclusion of x-y coupling
- Compare to April 2000 ATF measurements
- Conclusions

Motivations


- April 2000 ATF vertical emittance data in conflict with IBS theory.
- Standard (Bjorken-Mtingwa/Piwinski) theory is complicated and has two drawbacks:
 - *How to add general coupling
 - *Ambiguous Coulomb log (bmax = sigy, sigx, interparticle spacing???)

We hoped that by dealing with CL ambiguity and adding coupling we could understand ATF data.

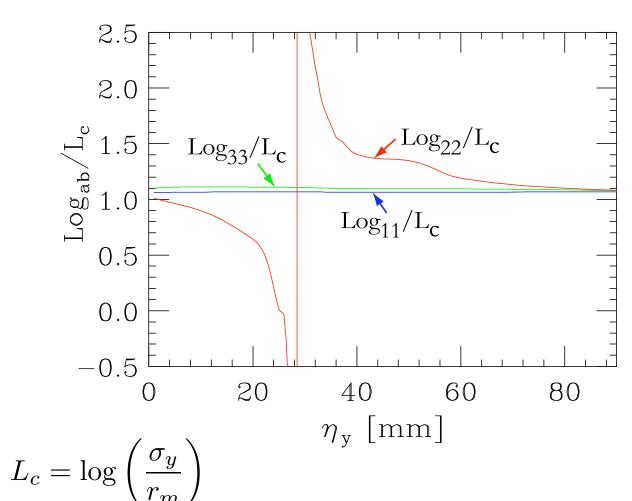
New IBS Analysis

Fokker-Planck equation

Emittance evolution equations

Advantages:

Treats the general coupled case naturally


No Coulomb log

For Gaussians, we can reduce to a double integral in the general case.

$$\mathcal{A}K_{ab} = \left(\frac{d\langle p_a p_b \rangle}{dt}\right)_{\text{IBS}}$$

$$2\operatorname{Log}_{ab} = \frac{-\int d\Omega \frac{h_{ab}}{h_3} \log(h_1)}{\int d\Omega \frac{h_{ab}}{h_3}} = \frac{K_{ab}}{K_{ab}^{\mathrm{BM}}}$$

Computed Coulomb Logs for ATF

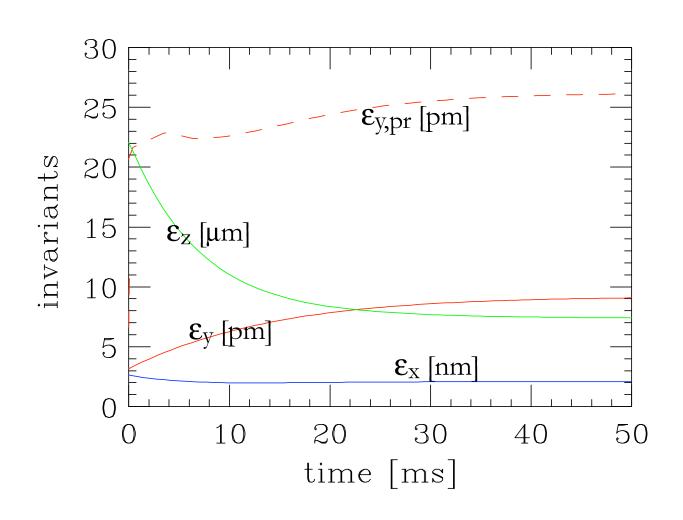
 K_{22} unimportant in High Energy Approximation (HEA)

HEA valid when

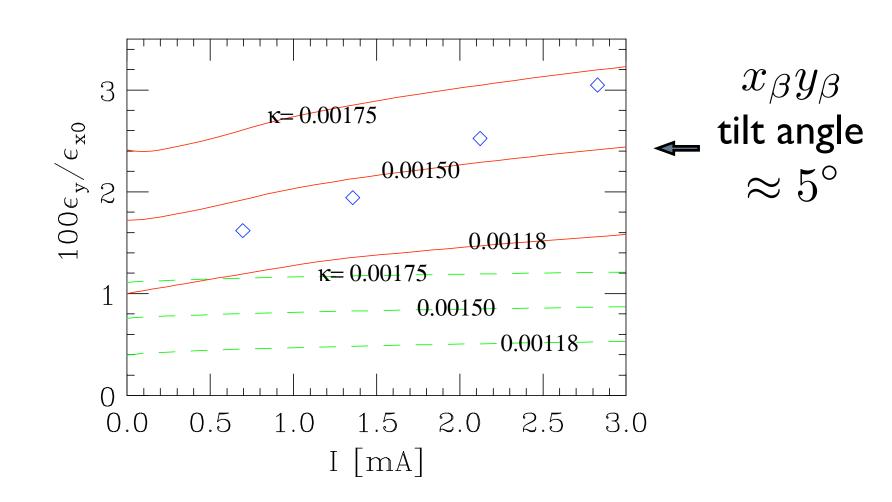
$$\left(\frac{\gamma\eta_y}{\beta_y}\right)^2 \gg 1$$

$$=1$$
 when $\eta_y=1.8~\mathrm{mm}$

x-y Coupling


Smooth Approximation Hamiltonian:

$$H(\vec{z}) = \frac{\beta c}{2} (k_x x_\beta^2 + x'^2 + 2\kappa x_\beta y_\beta) + k_y y_\beta^2 + y'^2 - \frac{k_z}{\alpha} z_\beta^2 - \alpha \delta^2)$$
 coupling term


We follow the evolution of the eigeninvariants of this Hamiltonian:

$$\kappa = \Lambda \sin \psi \qquad [(k_0 \pm \Lambda)x_{\beta}^2 + x'^2](1 \pm \cos \psi) + k_{x,y} = k_0 \pm \Lambda \cos \psi \qquad [(k_0 \pm \Lambda)y_{\beta}^2 + y'^2](1 \mp \cos \psi) \pm 2[(k_0 \pm \Lambda)x_{\beta}y_{\beta} + x'y']\sin \psi),$$

Evolution for ATF parameters

Comparison with ATF Measurements

ATF Parameters

 $E_0 = 1.28 \text{ GeV}, \ \eta_x = 0.052 \text{ m}, \ \eta_y = 0.0074 \text{ m}, \ \beta_x = 3.9 \text{ m}, \ \beta_y = 4.5 \text{ m}, \ \rho/R = 0.260, \ \epsilon_{x0} = 1.05 \text{ nm}, \ \epsilon_{y0} = 0.007 \text{ nm}, \ \sigma_{z0} = 5.05 \text{ mm}, \ \sigma_{\delta 0} = 5.44 \times 10^{-4}, \ N = 9 \times 10^9.$ The damping times $\tau_a = 1/\alpha_a$ are $\tau_x = 18.2 \text{ ms}, \ \tau_y = 29.2 \text{ ms}, \ \text{and} \ \tau_p = 20.9 \text{ ms}.$ For the minimum distance cut-off we used $r_m = \frac{r_0 \beta_x}{\gamma^2 \epsilon_x} = 1.66 \times 10^{-12} \text{ m}.$

Two interesting parameters are η_y and current.

For
$$\eta_y=1~ ext{mm}$$
 $\epsilon_{y0}pprox 10^{-13} ext{rad}- ext{m}$ and $\epsilon_{y,eq}=9.2 imes 10^{-13}~ ext{m}$ $\eta_y=0$ $\epsilon_{y0}pprox 0$ $\epsilon_{y0}=0$ and $\epsilon_{y,eq}=7.1 imes 10^{-13}~ ext{m}$

For coupled case: doubling current from 3.1 mA to 6.2 mA causes

$$\frac{100\epsilon_{y,eq}}{\epsilon_{x0}}:\ 2.4\to 2.7$$

Conclusions

- Our analysis allows more careful IBS computations -- Can we get beyond the "I/Log" accuracy?
- Our equations reduce to BM in a well defined way, allowing exploration of what the Coulomb log approximation means and when it can break down.
- We have included x-y coupling in a rigorous way
- For ATF parameters BM/CL seems good, but beware the "High Energy Approximation" for small vertical dispersion.
- The magnitude of ATF ϵ_y calculations consistent with coupling dominated region with 4-6 degree tilt angle. Current dependence does not fit. Measurements error? Non-IBS physics?

Future Work

- Explore full parameter space for ATF. Is there a realistic regime where we find a substantial difference?
- Apply to Protons and Heavy ions
- Non-Gaussian Equilibria
- Synchro-betatron coupling
- Extend beyond Smooth Approximation