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All around us are material objects of many kinds, and
it is quite difficult to move without shaking some of
them more or less. If we walk about on the floor, it
quivers a little under the fall of our feet, if we put down
a cup on the table, we cannot avoid giving a small
vibration to the table and the cup. If an animal walks
in the forest, it must often shake the leaves or the twigs
or the grass, and unless it walks softly with padded feet
it shakes the ground. The motions may be very minute,
far too small to see, but they are there nevertheless.

Sir William Bragg (1933), The World of Sound, p, 1.

F. Asiri



Linear Collider JLC-US Collaboration
US Machine Advisory Committee

Goal

» To design, build and operate a facility with a footprint of about 35 km by one-
half km wide including several buildings, some the size of a football field.
« To operate the facility, it takes,
— several hundred mega watts of electricity to energize motion of one kind
or another,
— thousands of gallons of water per minute to keep it at a desirable
temperature, and

— hundreds of people to keep it running.
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Vibration stability requirements

e To maintain the desired luminosity,
— the focusing components of the main linac must control uncorrelated motions to
within a few nanometers and a few Hz.

* Motion of these components are affected mainly by two sources;
— far-field (external) sources, which are produced external to the facility, and
— near-field (internal) sources, which are produced within the facility.

Below is an excerpt from MAC_Nov. Report:

4.1 Beam Dynamics, Ground Motion, and Stabilization Requirements

These studies continue to yield important information concerning the viability of
LC sites and the measures required to compensate for ground motion and vibration.
Measurements of noise transmission from the surface to the SLAC tunnel and
between adjacent tunnels in the LA subway are an important step in developing
tolerable noise level specifications for both the shallow and deep tunnel sites
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Technical Approach at pre-concept level
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Klystron and Modulator Vibration Characterization
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Conclusion:

* Vibration transmitted by the RF generating equipment to
the floor 1s nearly insignificant. 7/is could be because the
floor background noise in the NLCTA was ~20 nm.

» The dominant sources of vibration are from electrical,
rotating mechanical equipments, water flowing in pipes and
people working in the area.
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The speed of the rotating equipment is 3600 RPM (60 Hz).
The mechanical equipment weighs about 21,400 pounds.

Alimit of 0.1 g is met at rotating equipment, thus the inertia force at the
skid is about 2,140 Ib (a minimum of 10% reduction).

The mechanical equipment is mounted on a spring isolated skid.
Generally, they have a natural frequency in the range of 4 Hz to 6 Hz
which corresponds to a reduction factor of about 1%.

Thus, the transmitted dynamic force of the mechanical equipment at the top
of equipment foundation is reduced by a factor of about 1,000.
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Hanford Fan Vibration Measurements
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Soil fundamental frequency W

fs = Vs/(4H) H

|

ave’Length = Vs/ f

T Attenuation of waves:

i wlr =) A Rayleigh
- exp[— QAD J EXP[_ IJ on-surface
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Objectives:

. To experimentally determine the vibration transmissibility in geological
kinds similar to that at representative Next Linear Collider CA sites.

—  Cretaceous sandstone with claystone (shear velocity > 760
m/sec)

Vibration transmissibility was measured at two locations:
. At SLAC along Sector 9 and 10
—  Eocene sandstone and claystone (shear velocity of ~720 m/se
. At the Los Angeles County Metropolitan Transportation Authority (MTA)
Red Line tunnels near the Universal City Station.
—  Miocene sandstone and shale (shear velocity of ~950 m/sec)
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Vibration Measurements in the MTA Tunnels

. Retained Services of the Parsons/Geovision team to perform these
vibration measurements.

—  Parsons/Geovision team brought decades of vibration measurement,
analysis, design and implementation experience.

—  Their most resent experience were with NIF and LIGO projects.
. Performed the following five (5) tests:

1.  Ambient (traffic) source, measurements in both Tunnel A and on
surface above

2. Source on surface, measurements near source and in Tunnel A below
source

Source in Tunnel A, measurements along Tunnel A
Source in Tunnel A, measurements in both Tunnels A and B

5.  Train source, measurements in Tunnel (cross-passage between A and
B) and on surface above

nali e
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Measurements along the Tunnel - 11 May 03
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Digital recorders (Geometrics “Geode” and Kinemetrics SSR)
Vertical 1-Hz Seismometers (Kinemetrics SS-1 and Geospace
GS-1)

Vertical 10-Hz Seismometers (Geospace GS-20DM)

Accelerated weight (200 Ib)drop seismic source, mounted on
back of pickup

Vertical accelerometer on drop weight to measure force impulse

Typical receivers set-up
Geophone & Accelerometer

Set-up of recording instrument at the source location Vibration test measurements in progress in tunnel “A”

20
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Test 2 Controlled Source at Surface
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Test 2: Controlled Source at Surface

Test 2: Velocity Xfer Functions, TunnelfScurce, Avg. of 10 Blows R 1t .
_1

... | we——Tunnel Oft/Source 201t

] = Tumnel 100 Source 20t | Coherence between surface
and tunnel low due to
unsynchronized recordings

e Signal quality is good for
the 1-Hz seismometers,
suggesting that data can be
useful in estimating tunnel
motions from a surface
source

Xfer Function Magnitude

.. . . | . e  Transfer functions
’ * . ST ' = (tunnel/surface) show
attenuation vs. frequency

Receiver Path Attenuation/ XFER Magnitude . .
Location Length *  Mobility (velocity/force)
Feet| 10 Hz 20 Hz 30 Hz 60 Hz . .
[Fee useful for estimating future
Tunnel A-100 ft 133 0.0275 0.0210 0.0070 0.0006 known surface sources
Tunnel A-200 ft | 219 0.0200 0.0040 0.0020 0.0004
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Test 3: Controlled Source in Tunnel A, Measurements Along Tunnel A

Tast 3 20° Sensor (Ch. 1) 10 Stacked Source Blows

Test 3: 100" Sensor (Ch. 3), 10 Stacked Source Blows 0 Tost 3: 300 Sensor (Ch. T) 10 Stacked Sous

ree Blows h Tust 3 500° Sanaar (Ch. 5], 10 Stacked Source Blows

Test 3: Mobilities, Velocity/Force, Average of 10 Blows
T i T T T

10°}

10

1 1 I I L 1 L i 1 1
] 20 40 60 80 100 120 0 20 40 60 80 100 120
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Test 3: Transfer Functions, 20" Sensor Reference, 10 Blow Average
10 T T T T

L
[ = 100ft/20%t ||
— 200f/20f |
= 300ft/20ft

(== Test 3- Results:

» Coherence between
sensors 1s high

« Signal quality 1s good for
the 1-Hz seismometers,
suggesting that data can be
useful 1n estimating tunnel
motions from a tunnel

Xfer Function magnitude
=Sqri(Abs(Pxy/Pxx))
3
T

source
. | * Transfer functions
10 | 1 | | | .
0 Z g B, B 100 120 (velocity/reference
, _ :
velocity at 20”) show
Receiver Path Attenuation/ XFER Magnitude attenuation vs. frequency
Location L[:lng:]h 0Hz | 20Hz | 30Hz | 60Hz |« Mobility (velocity/force)
ee .
Tunnel A- 100 ft 100 0.600 0.5300 0.380 0.130 CE.lIl be used to estimate
vibration from a known
Tunnel A-200 ft 200 0.300 0.320 0.175 0.100 source fOI'CC
Tunnel A- 300 ft 300 0.160 0.200 0.120 0.060
Tunnel A-500 ft 500 0.140 0.100 0.060 0.048

. Asini
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Test 4: Controlled Source in Tunnel A, Measurements in Tunnels A & B

*  Measurements on May 13 morning

. Simultaneous in-tunnel vibration
measurements

—  (Tunnel A: 17°, 48°, and 95°
horizontally from source;

—  Tunnel B: 0°, 100°, and 300’
along tunnel from source
projection

* 10 Source blows stacked and
averaged

Tunnel A

Tunnel B
F. Asiri

PSD, (cm/sHz
=2

Test 4: Power Spectra, Ground Velocity, Avg. of 10 Blows

- | === Tunnel A 95ft

13| | wemm Tunnel B Oft 3 ; —
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20 40 &0 80 100
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. Test 4: Transfer Function, Tunnel A 17° Ref,, Avg. of 10 Blows
T T T T

sqrt(abs(Pxy/Pxx))

Transfer Function Magnitude

T o
= Tunnel A 48ft |
= Tunnel A 951 ||
== Tunnel B Oft
=== Tunnel B 1001t |
=== Tunnel B 300ft ||

I
40

1
&0
Frequency, Hz

i
80

120

US Machine Advisory Committee
Test 4-Results:

Receiver Path Attenuation/ XFER Magnitude
Location R ETYTS 20 Hz 30 Hz 60 Hz
[Feet]
Tunnel A- 48 ft 48 0.70 0.60 0.60 0.50
Tunnel A-95 ft 95 0.6 0.40 0.25 0.15
Tunnel B- 0 ft 39 0.75 0.80 0.80 0.60
Tunnel B-100 ft 107 0.50 0.50 0.40 0.08
Tunnel B-300 ft 303 0.15 0.17 0.10 0.058

F. Asiri

Signal quality is good for
the 1-Hz seismometers,
suggesting that data can
be useful in estimating
tunnel motions from a
tunnel source

Transfer functions
(velocity/reference
velocity at 17°) show
attenuation vs. frequency

Mobility not measured
due to failure of source
accelerometer

Attenuation between the
tunnels 1s rather low, and
not more than 0.5 to 0.7
for across the tunnel
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Tast 5, Train Source, Tunnel Data, 0730 Data Sat

Test 1: Ambient (traffic)
source

§ 8 § § ¢
.
. E 8 § § 3

-000‘2-' E
s Surface Ambient Data : |
o ! " Ambient Data in Tunnel-A

Test 1: Ambient, Surface PSD's, All 15 Data Sets

Test 1: Ambient, Tunnel PSDs, All Data Sets
T T T

/ 0730 Data witrain

60 Hz Noise

PSD, (cm/s)Hz

i i i i I i 1
0 ZID 410 QID Bln 100 0 20 40 G0 80 100 120

Frequency, Hz Frequency, Hz

Measured Surface Power Spectra  Measured Tunnel Power Spectra
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Test 5:Train as Vibration Source (same measurements as Test 1)

Test 5: Train, Xfer Function, Surface/Tunnel, 0730 Data Set

Results: B i |

| = Coherence 1

* Only one train passing recorded
by both surface and tunnel

» Train vibrations are similar in
magnitude to freeway traffic at
surface, but well above ambient 1n
the tunnel

« Transfer functions | ==
(surface/tunnel) show attenuation u
of upgoing energy vs. frequency

f”
» Strong site amplification observed ol ._ ._ L % ” _
at ~10-20 Hz, probably due to a ’ N © e =
weathered rock layer Transfer Function, Surface/Tunnel

.

Transfer Function magnitude

S S S ——— H HIE
: L — — -
: : H -

* Coherence 1s moderate, suggesting a partial input-output relationship with the
train as mput

* These results should be applied with care, with the limitations (only one train,
moderate coherence, possible site response) these data only generally define the
attenuation for an in-tunnel source
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Comparison of Vibration Measurement Results

MTA Tunnel Vibration Measurements
Comparison of Geovision & Colin Gordon Result:

Attenuation, Tunnel Receiver/Surface Source
Colin Gordon Data from Page 6 of 7 August 2002 Report (S1 Data)

Geovision Data from Test 2 Transfer Functions

Attenuation/XFER Magnitude

Data Source JPath Length, ft] 20 Hz 30 Hz 60 Hz
Colin Gordon 130 0.0084 0.0120 0.0050
8/2002 134 0.0120 0.0140 0.0040
162 0.0084 0.0060 0.0010

233 0.0040 0.0020 0.0010

289 0.0020 0.0009 0.0003

Geovision 87 0.0300 0.0110 0.0009
6/2003 133 0.0210 0.0070 0.0006
219 0.0040 0.0020 0.0004

F. A

0.100

Comparison of Attenuation/XFER Magnitude at 20 Hz
Colin Gordon 2002 & Geovision 2003
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Comparison of Attenuation/XFER Magnitude at 30 Hz
Colin Gordon 2002 & Geovision 2003
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Proposal:
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representation based procedure.

* to assess the response of technical foundation from near and far field sources.
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2. Ground input motion
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¢. Ploite element

simulations

US Machine Advisory Committee

b. Local soil conditions

(In collaboration with Nick Simos of BNL )

* to utilize an integrated procedure used for 3-D modeling and dynamic soil analysis
of Fault-Soil-Structure interaction.

* to generate ground motion and spatial distribution of soil properties using spectral
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