

JLC/NLC X-Band Structure Design

Zenghai Li ISG10 SLAC, June 19, 2003

Design Considerations

- Minimize input power
 - Using shorter structure length
 - Improving shunt impedance
- Optimize aperture profile to meet long-range (detuning) and shortrange (average) wakefield requirements
- Tailor gradient profile to "remove" "hot" breakdown region
- Include beam loading and BNS damping in optimization
- Lower surface fields (E,B)
- Fix length; optimize filling time; "no" constraint on vg profile

Structure Length

- Power and surface field are relevant factors that cause breakdown and damage
- Input power roughly proportional to length
- Shorter length to lower input power
- Present designs stay with 0.60m

Phase Advance and a/λ

•Higher phase advance provides higher *R* and *Q*.

- •Power per structure inversely proportional to R/Q(1+0.5dQ/Q150)
- •150⁰ phase advance provide good efficiency and surface fields.

a/λ: Input Power Comparison

a/λ v.s. Power Requirement Unloaded gradient=65MV/m, ~5% more power for slotted/elliptical						
a/λ	Non-slotted, Circular iris	Slotted, Elliptical iris				
0.18	63.0	68.6*				
0.17	55.8	58.6				
0.165	52.4	55.0				
0.16	49.6	52.8				
0.15	43.7	45.9				

*H60VG3S18

- Iris was changed from circular to elliptical without optimization
- Filling time is shorter, due to elliptical iris, than H60VG3N-6C
- More power needed

Beam Loading v.s. a/λ

a/λ	Multi bunch	Single bunch		
	(MV/A/m)	MV/A/m	ϕ_0 , degrees	
0.18	14.17	0.83	-10.5	
0.17	15.78	0.85	-10.7	
0.16	17.67	0.95	-12.6	
0.15	19.23	1.05	-15.0	

- The multi-bunch beam loading ($\propto R$) more sensitive to a/λ than RF gradient ($\propto R^{1/2}$).
- The single-bunch loading need to be compensated by accelerating the beam off crest and with higher RF gradient.
- Larger loading ratio at smaller a/λ that may reduce the gain in efficiency.

Linac Tolerance v.s. a/λ

α/λ	\$\$\$\$ \$	E_{l}, GeV	\$\$\$ _2,	E_2 , GeV	<i>\$\$</i> 3,
	degrees		degrees		degrees
0.18	12	30	0	165	-30
0.17	14	30	0	162	-30
0.16	16	30	1	142	-30
0.15	19	30	4	113	-30

It is not possible to achieve an acceptable emittance for $a/\lambda=0.15$, despite significant BNS phase offsets utilized.

position in the linac

ZL 6/10/2003

Efficiency Of A 500-GeV Machine

 $a/\lambda=0.18$ parameter • $P_{a/\lambda=0.18} = 58.6MW$ • $NS_{a/\lambda=0.18} = 8434$

- 50 MV/m loaded gradient assumed
- RF requirements for a 500*GeV* machine, scale to the design of $a/\lambda=0.18$.
- Significant gain in RF efficiency with smaller a/λ , though needs larger BNS overhead and beam loading.
- Smaller a/λ can potentially handle high power

Wakefield: Dipole Detuning

- Present design: symmetric Gaussian detuning
- New design: asymmetric Gaussian detuning
- Improving wakefield by interleaving

Gradient Improvement

Hope to gain more gradient margin for the next structure

- Introduce stronger gradient tapering in front by
 - Larger detuning
 - Asymmetric spectrum, more cells at low dipole frequency end
- Maintain $a/\lambda=0.17$
- Maintain the same efficiency same input power

H60 E_s, E_{acc} v.s. Detuning

E_{acc}, E_s v.s. Detuning+Shifting

Exproving E_{acc}/E_s With New Dipole Detuning

E_{acc}/E_s Compared With H60VG3S18 (2)

E_{acc}/E_s Compared With H60VG3N-6C &H60VG3S18 (3)

Dipole Dispersion Of Case-c

Case-c:

- F_{center}=15.303 GHz
- dF/F=11%
- N_{sigma}=4
- F_{shift} =-0.2 GHz

Structure Parameter Comparison

H60VG3S17 v.s. Case-C

Couplers

Fundamental Power Coupler – one of the following

- Mode launcher
- Waveguide
- Compact fat-lip

HOM coupler

- Improve the compact design
- Cold-test

Minimize Q Reduction

Present slot design results in a Q reduction of about 6% Require 3% more power

Using narrower slots

Round cell to eliminate wide slot

What is the impact on machining?