JLC * Sites and Civil Engineering

Revisit and Update Works
by
Site Study Group \& Utility Group

@ISG10
T. Matsuda

KEK/IPNS
(*) Now GLC

Candidate Sites for JLC

Site Study Group
(Sept. 2001 - March 2003)

Two Categories:
(A) 8 Areas of Uniform Bedrock:
(Yellow No.)
(B) 4 Areas of Scientific City or

National Project:
(Blue Characters)

Here, n, L,altitude,depth, power and T are selected region number, total length, altitude of the tunnel, minimum/maximum depth of the tunnel, nearest power lines and annual average temperature, respectively. Major issues include the most significant items to be further investigated. Non-numbered sites are development and research bases. Bold-faced parts require careful consideration

* This shows the total power instead of nearest power line, which is available in Okinawa as at May,2003.
weighting factors for the scores in this table require further studies.

Table 6.4: Preliminary assessment of candidate sites. Note: For comprehensive evaluation, the

Candidate site	Length	Geology	Absen of larg river

Candidate Site: Two Examples

Area of Uniform Bedrock: Abukuma Site (Route No.1)

Area of Science City: Tsukuba Site (KEK Route)

One Example:

Abukuma Site:

Geology: Mostly Granite.
Diolite-Gabbro.
Geography: Highland
Location; Two Hours Drvies to
North-East from KEK
Three Routes:
No. 1 Route: 27 km
No. 3 Route: 33km (Max.50km)

Abukuma Site: Georogy \& Geography

Abukuma Route No.1: One Example of Tunneling Plan

 (For the Standard Accelerator Layout)| Acc. Tunnel $(\Phi 3 \mathrm{~m}):$ | 5 TBM Machines |
| :--- | :--- |
| Klystron Tunnel $(\Phi 4.5 \mathrm{~m}):$ | 5 TBM Machines |
| | $(4.6-6.1 \mathrm{~km} / \mathrm{TBM})$ |
| 6 Inclined Access Tunnels: | NATM |
| 7 Vertical Utility Shafts $(\Phi 3 \mathrm{~m}):$ | By Reaming Bits |
| Experimental Hall (100m deep): | NATM |
| Vertical Shaft ($\Phi 15 \mathrm{~m})$ to Experimental Hall: | |
| Construction: | About 4 Years |

Reaming Bit

立坑(リーミングビット)

径 3 m の立坑を地上部より結直に施工する。立坑は大口径岩盤ボーリンク找により T B M㯃削完了後に権工する。
まず，パイロットれ（ $\$ 350 \mathrm{ma}$ ）を，上から下にTBMC䞄工济みのトンネルまで開孔す る．次に拡幅のためのリーミングビットをTBM坑内で取り付け，下から上に径 3 m で拡

付けを 5 cm 掘刑面に施工する。

Abukuma Route No．1：One Example of Tunneling Plan

Abukuma Root No． 1

Cross Section
校䉼区

Abukuma Route No.1: Civil Engineering

Construction: All Feasible.
Options (Vertical Utility Shaft v.s. Horizontal Access etc.)

Cost of Civil Engineering \& Construction Time: 27 km Tunnels
\$600-700M (Experimental Hall: 23* $-62^{* *} \mathrm{M} \$$) ($1 \$=100 \mathrm{Yen}$)
Roughly 4 Years (or Longer for Lower Cost)
May Depend on Details of Geology and Regulations
(Safety, Radiation etc.).
(*) $\Phi 60 \mathrm{~m}, \mathrm{H} 30 \mathrm{~m},{ }^{(*)} \Phi 31, \mathrm{H} 40 \mathrm{~m}(!)$

Another Example: Tsukuba Site

KEK Route: Semimetal Layer (Pleistocene) 80m (> 50m) Underground
Partially Residential Area Shield Tunnels Three Plans: 10, 22 (\& 33) km

Tsukuba Mountain Route:
Mostly Granite
Mostly Under Mountains
TBM Tunnels
Plan of 31 km

KEK Route:

Motivations: (\rightarrow ISG8)
KEK \& Tsukuba Science City
Geology \& Geography: (\rightarrow ISG8)
Semimetal Layer (Pleistocene)
Underground Water (-25 mGL)
Tunnel Depth: 80m (>50m)
Three Plans:
$10, \underline{22} \& 33$ (*) km
(*) preliminary

KEK Route: Geology \& Geography

JLC @ KEK site
Cross section
(Plan A 22 km @-60m SL)

Geologic Cross sections ($30 \mathrm{~m} \sim-70 \mathrm{~m}$ SL) (Three borings at KEK)

KEK 22km Route:

IP, Injectors \& Beam Dump

Inside KEK.
Dumping Rings
On the Surface.
Minimum Facilities
On the Surface outside KEK
Under Tsukuba City
\rightarrow Ground Vibration (Culture Noise)

KEK Route: Accelerator Layout

Fig. 2

Injector and Pre-accelerator Section

- Open Cut Tunnels (10 m deep) Klystron Gallery on Top
- Slant Tunnels (10% slope)
- Accelerator Tunnels and Detector Hall (-80m deep)
- Kystron Gallery (-74 m deep)

Collimator Section w/o XY Collimation
107 m for $\mathrm{Ebm}=200 \mathrm{GeV}$
267 m for Ebom $=500 \mathrm{GeV}$
267 m for Ebm $=500 \mathrm{GeV}$

Pro-accelerator Linacs $(1-1 \mathrm{~km})$ have sparsely spaced accelerating stuctures to share

KEK Route: Pre-Accelerator Layout

Fig. 1-a
Injector and Pre-accelerator Section

- Open Cut Tunnels (-10m deep) Kystron Gallery on Top
- Slant Tunnels (10% slope)
- Accelerator Tunnels and Detector Hall (-80m deep)
=Kystron Gallery (-74 m deep)
Collimator Soction w/o XYY Collimation

Pre-accelerator Linass ((1 kmm) have sparsely spaced accelerating structures to share
kiystoon gelleries with Main Linacs.
k kyston galleries with Main Linacs.

KEK Site: Plan A (22 km)

Tunnel Layout

- Injector system up to the damping rings is on the surface (-10 m).
- Inclined (10 \%) tunnels to transport 1.98 GeV electron and positron to the main linac tunnel ($\sim \mathbf{- 8 0} \mathbf{~ m}$).
- Main linac tunnel (3 mm) with an arc at each end at ~ -80 m .
- The cross section of the main linac tunnel is "locally expanded" ($3 \mathrm{~m} \varphi \rightarrow 4.5 \mathrm{~m} \varphi$) to accommodate the first bunch compressors and the pre-linacs are installed in the main linac tunnel.
- The main linac tunnel (of the standard cross section of $\mathbf{3} \mathbf{~ m}$ φ) also accommodates the transport lines, the second bunch compressors.
- The klystron tunnel ($4.5 \mathrm{~m} \varphi$) and the main linac tunnel, which is separated by 5 m , are located diagonally so that one shaft can serve for the two tunnels in the drilling and the operation.
- In some case, the underground conjunction of two tunnels is made without shaft improving the stiffness of the soil by the freezing technique or the injection (hardening agent) method.

KEK Route: Tunnel Layout (3D)

KEK Route: Tunnel Layout (Shaft)

Each Shaft Serves

2-4 Shield Machines for Acc. Tunnel \&

Klystron Tunnel.

KEK Route：Base to Serve 4 Shield Machines

発進基地仮設平面図
（シールド4本同時施行時：3800平方m）

KEK 22km Route: An Example of Tunneling Plan

 (Among Many Variations)Acc. Tunnel (Φ 3m)
\& Inclined Beam Transfer Tunnels: 6 Shield Machines.

Klystron Tunnel ($\Phi 4.5 \mathrm{~m}$) : 6 Shield Machines with Two Modified ($\Phi 3 \mathrm{~m} \rightarrow \Phi 4.5 \mathrm{~m}$)
6 Large Shafts ($\Phi 15 \mathrm{~m}$) : Automatic Open-caisson.
Tunnel Merge without Shaft (Two Locations):
4 Utility Shaft ($\Phi 3 \mathrm{~m}$):
Reverse Circulation Drill

KEK 22km Route: An Example of Tunneling Plan

Acc. Tunnel $\phi 3 \mathrm{~m}$

KEK 22km Route: An Example of Tunneling Plan (Many Other Options)

(*) Acc. Tunnelः Partially $\Phi 4.5 \mathrm{~m}$

Klystron Tunnel :			Acc. Tunnel : $\left.\Phi 3.0 \mathrm{~m} \mathbf{*}^{*}\right)$		
Shield Machine	Excavation (kim)	5.0		Shield Machine	Excavation (km)
No. K1	$5.2+08$	No. A1	5.63	R=100m	
No. K2	$5.2+0.8$		No. A2	4.1	Merge with K5
No. K3	5.0		No. A3	4.1	Marge with K6
No. K4	1.1	Recycle A5 Marge with A2	No. A5	$0.7+0.8$	
No. K5	1.1	Recycle A6 Marge with A3	No. A6	$0.7+0.8$	0.7km:Inclined Tunnel
No. K6	24.2		All	22.46	
All					

KEK Route: Major Issues

1. Ground Vibration (Culture Noise): Measured at GL-80m (->Tauchi)
2. Long Term Stability (Drift) of Tunnels in Pleistocene Semimetal Layer.
3. Cost of Large Underground Experimental Hall: New Method?
4. Cost of Shield Tunnel in Japan:

Still Higher Than Other Countries.
$1.5-2.0 \times$ TBM.
5. "Accelerator" Partially Under Residential Areas of Tsukuba City:
6.
7. Future of KEK :

KEK Route: Experimental Hall

1. City NATM: Cheep but Feasibility with High Underground Water?
2. Diaphragm Wall Method: Feasible but Expensive.
3. Whale (Dinosaur) Bone Roof Method:

Very Interesting
But No Real Experience Yet.

KEK Route: Experimental Hall (Diaphragm Wall)
 $3 \times \Phi 50 \mathrm{~m}$ Experimental $\mathrm{Hall}(31 \mathrm{~m} \times \times 100 \mathrm{~mL})$
 by Three Diaphram Walls

KEK Route: Experimental Hall (Dinosaur Bone)

Technology in R\&D Stage:
"Wakunami" Tunnel (${ }^{\circ} 01$ - 05)
($\mathrm{R}=5.0$ and 6.3 m)

KEK Route：Experimental Hall（Dinosaur Bone）

```
施工順序
```


KEK Route：Experimental Hall（Dinosaur Bone）
 （ $30 \mathrm{~m} \times 30 \mathrm{~m} \times 60 \mathrm{~m}$ ）
 $28 \mathrm{mH} \times 28 \mathrm{~W} \times 6 \mathrm{~mL}$
 A－A断面図 $S=1 / 1,000$

KEK Route: Experimental Hall (Dinosaur Bone)

KEK Route: Civil Engineering

Construction:

Tunnels and Shafts:	Feasible. Many Options. Various Advanced Shield Technologies.
Experimental Hall: \quad	Major Technical Issue (Dinosaurs Bone?) Expensive.

Cost of Civil Engineering and Construction Time: $\underline{22 \mathrm{~km}}$
940-990M\$ (Experimental Hall*: 150 - 170M\$)
About 5 Years.
Not Much Depend on Details of Georogy.
(*)Diaphragm Wall, $\Phi 50 \mathrm{~m}$.

KEK Route 33km:

Change Direction to

More North-South?

At South End:

Joban Highway
(Better than
Higashi Ohdori?)
JR Joban Railway
Tsuchiura City

JLC * Sites and Civil Engineering Summary or Plan

Site Study: Proposed A Review by Outside Experts of Various Fields. (But When?)

Civil Engineering: Continue Case Studies for More Details.

Facility: Revision (for Consistent Estimate for X-band). Start Case Studies.
(*) Now GLC

