JLC * Sites and Civil Engineering

Revisit and Update

Works

by

Site Study Group & Utility Group

@ISG10

T. Matsuda

KEK/IPNS

(*) Now GLC

Candidate Sites for JLC

Site Study Group

(Sept. 2001 – March 2003)

Two Categories:

- (A) 8 Areas of Uniform Bedrock: (Yellow No.)
- (B) 4 Areas of Scientific City or National Project:

(Blue Characters)

 $(research\ and\ development\ bases)\ regions.$

Table 6.3: Major characteristics and issues of 14 representative routes in 8 (good geology) and 4

\mathbf{n}	site	\mathbf{L}	geology	geography	altitude	depth	power	\mathbf{T}	major issues
		$\rm km$			m	m	KV(MW)	$^{\circ}\mathrm{C}$	
1	Hidaka	28	granite,	base of -	270	38-499	187(526)	7	power supply capacity,Route274,
			hornfels	mountains					tunneling in alluvial valley, snow(2m)
2	Kitakami	31	granite	hilly terrain	100	80-600	275(746)	10	power flow,quarry,no city
3	Murakami	30	granite	highland	$-5 \sim 70$	36-563	154(154)	14	power supply capacity, snow(1m), old mines
									mylonite region, quarry ,no city, hot spring
4	Abukuma	36	granite	highland	390	30-300	275(962)	11	power flow,golden eagle,quarry
4	Kita-Ibaraki	30	granite	highland	$210\sim310$	40-330	275(1138)	13	power flow,natural park,quarry
5	Aichi·Gifu	22	granite	highland	$20\sim265$	20-200	500(2788)	15	highway,semi-national park,quarry,
	(Asuke)								hot spring
6	Takamatsu	30	granite	base of -	$100\sim200$	50-370	500(2788)	15	active faults(3 km)
				mountains					
7	Hiroshima	29	granite	hilly terrain	$250\sim300$	40-450	500(1748)	13	${\rm clump\ of\ rhododendron}(1\ km)$
	(east)								
8	Seburi	38	granite	hilly terrain	$110\sim230$	60-520	500(2788)	16	dam construction, quarry, hot spring
	Mutsu-	22	andesite	base of -	$70 \sim 90$	35-220	154(292)	9	snow(1m),no city
	Ogawara		agglutinate	mountains					
	Tsukuba	22	sedimen-	plain	-50	80	500(1788)	14	urban area, stability,
	(KEK)		tary layers						road vibration
	Mt.Tsukuba	31	granite	hilly terrain	40	30-500	500(1788)	14	JR Mito line,Route50,Joso tunnel,
	(Bucyouzan)		metamorphic						semi-national park, quarry, hot spring
	Harima	30	ophiolite,	hilly terrain	40	28 - 365	500(6712)	14	heterogeneous geology, Chikusa-river,
	(Spring8)		shale etc.						Chizukyu line,hot spring
	Okinawa	24	phyllite,	hilly terrain	50	47 - 326	(1756^*)	22	power supply capacity, rare animals,
			sand						no city

Here, n, L,altitude,depth, power and T are selected region number, total length, altitude of the tunnel, minimum/maximum depth of the tunnel, nearest power lines and annual average temperature, respectively. Major issues include the most significant items to be further investigated. Non-numbered sites are development and research bases. Bold-faced parts require careful consideration.

 $^{^{*}}$ This shows the total power instead of nearest power line, which is available in Okinawa as at May,2003.

Candidate site	Length	Geology	Absence	AC power	Climate	Environmental	Access	Research
			of large		and Cultural	impact		in frastructure
			river		noise			
Hidaka	0	0	0	Δ	0	0	0	0
Kitakami	0	\odot	\odot	\circ	\odot	\circ	\circ	\circ
Murakami	0	\circ	0	\triangle	\circ	\circ	Δ	\circ
Abukuma	0	\odot	\odot	\circ	\odot	\circ	\circ	\circ
Kita-Ibaraki	(\odot	\odot	\circ	\odot	\circ	\circ	\odot
Aichi · Gifu	0	\odot	\odot	\odot	\circ	\circ	\odot	0 0 0 0
Takamatsu	O	\circ	\odot	\odot	\odot	\odot	\circ	\circ
Hiroshima	0	0	\odot	\odot	\odot	\circ	\odot	\circ
Seburi	O	0	\odot	\odot	\circ	\circ	\odot	\circ
Okinawa	0	0	0	Δ	0	Δ	Δ	0
Harima	0	\circ	\circ	\odot	\circ	\circ	\circ	\circ
(SPring-8)								
KEK	0	*	\odot	\odot	\circ	\circ	\odot	\odot
Mt.Tsukuba	0	0	\odot	\odot	\circ	\circ	0	\odot
Mutsu	0	\circ	\odot	\odot	\circ	\odot	\triangle	\circ
-Ogawara								
Legends:	\bigcirc : $> 30km$	O: Hard	O: Chikusa-	∆: shortage	O: Vicinity	Δ:	©: Vicinity	O: Close to
©:Excellent	without	rock area	river	expected	of dam, rail	Endangered	of large city	J-PARC
O: Good	constraints.	(granite)			road, heavy	species.	with internat'l	or KEK.
\triangle : Fair					traffic road,		schools	
	0:	*:		O: power	snow $(> 1 \text{ m})$,		\triangle : no city	
	$20 \sim 30 \text{ km}$	measuring		flow to be			with $100,000$	
		ground		investigated.			residents	
		motions.					within 30km.	

Candidate Site: Two Examples

Area of Uniform Bedrock: Abukuma Site (Route No.1)

Area of Science City: Tsukuba Site (KEK Route)

One Example: Abukuma Site:

Geology: Mostly Granite.

Diolite-Gabbro.

Geography: Highland

Location; Two Hours Drvies to

North-East from KEK

Three Routes:

No.1 Route: 27km

No.3 Route: 33km (Max.50km)

Abukuma Site: Georogy & Geography

Abukuma Route No.1: One Example of Tunneling Plan (For the Standard Accelerator Layout)

Acc. Tunnel (Φ3m): 5 TBM Machines

Klystron Tunnel ($\Phi 4.5$ m): 5TBM Machines

(4.6 - 6.1 km/TBM)

6 Inclined Access Tunnels: NATM

7 Vertical Utility Shafts (Φ3m): By Reaming Bits

Experimental Hall (100m deep): NATM

Vertical Shaft (Φ 15m) to Experimental Hall:

Construction: About 4 Years

Reaming Bit

立坑(リーミングビット)

径3mの立坑を地上部より鉛直に施工する。立坑は大口径岩盤ボーリング機によりTB M規削完了後に施工する。

まず、パイロット孔(φ350mm)を、上から下にTBMで施工済みのトンネルまで削孔する。次に拡幅のためのリーミングビットをTBM坑内で取り付け、下から上に径3mで拡幅を行う。掘削ずりはTBM坑内から搬出する。

掘削完了後、立坑上部より牽引ゴンドラ内で入力により樹脂ファイバー入りモルタル吹付けを $5 \, \mathrm{cm} \,$ 堀削面に施工する。

Abukuma Route No.1: One Example of Tunneling Plan

Abukuma Route No.1: Civil Engineering

Construction: All Feasible.

Options (Vertical Utility Shaft v.s. Horizontal Access etc.)

Cost of Civil Engineering & Construction Time: 27 km Tunnels

\$600 - 700M (Experimental Hall: 23* - 62**M\$) (1\$ = 100Yen)

Roughly 4 Years (or Longer for Lower Cost)

May Depend on Details of Geology and Regulations

(Safety, Radiation etc.).

(*) Ф60m, H30m, (*)Ф31, H40m (!)

Another Example: Tsukuba Site

KEK Route: Semimetal Layer (Pleistocene)

80m (> 50m) Underground

Partially Residential Area

Shield Tunnels

Three Plans: 10, 22 (& 33) km

Tsukuba Mountain Route:

Mostly Granite

Mostly Under Mountains

TBM Tunnels

Plan of 31km

KEK Route:

Motivations: $(\rightarrow ISG8)$ KEK & Tsukuba Science City Geology & Geography: (→ISG8) Semimetal Layer (Pleistocene) Underground Water (-25mGL) Tunnel Depth: 80m (>50m) Three Plans: 10, <u>22</u> & 33 (*) km (*) preliminary

KEK Route: Geology & Geography

JLC @ KEK site Cross section (Plan A 22km @ - 60m SL)

Geologic Cross sections (30m ~ - 70m SL) (Three borings at KEK)

KEK 22km Route:

IP, Injectors & Beam Dump
Inside KEK.

Dumping Rings

On the Surface.

Minimum Facilities

On the Surface outside KEK

Under Tsukuba City

→ Ground Vibration(Culture Noise)

KEK Route: Accelerator Layout

KEK Route: Pre-Accelerator Layout

Fig.1-a

KEK Site: Plan A (22 km)

Tunnel Layout

- Injector system up to the damping rings is on the surface (-10 m).
- Inclined (10 %) tunnels to transport 1.98 GeV electron and positron to the main linac tunnel (~-80 m).
- Main linac tunnel (3 m) with an arc at each end at ~
 -80m.
- The cross section of the main linac tunnel is "locally expanded" (3 m 4.5 m) to accommodate the first bunch compressors and the pre-linacs are installed in the main linac tunnel.
- The main linac tunnel (of the standard cross section of 3 m) also accommodates the transport lines, the second bunch compressors.
- The klystron tunnel (4.5 m) and the main linac tunnel, which is separated by 5 m, are located diagonally so that one shaft can serve for the two tunnels in the drilling and the operation.
- In some case, the underground conjunction of two tunnels is made without shaft improving the stiffness of the soil by the freezing technique or the injection (hardening agent) method.

KEK Route: Tunnel Layout (3D)

KEK Route: Tunnel Layout (Shaft)

Common Shaft for the Two Tunnels

Each Shaft Serves

2-4 Shield Machines for Acc. Tunnel & Klystron Tunnel.

KEK Route: Base to Serve 4 Shield Machines

発進基地仮設平面図 (シールド4本同時施行時:3800平方m)

KEK 22km Route: An Example of Tunneling Plan

(Among Many Variations)

Acc. Tunnel (Φ 3m)

& Inclined Beam Transfer Tunnels:

6 Shield Machines.

Klystron Tunnel (Φ 4.5m): 6 Shield Machines with Two Modified

 $(\Phi 3m \rightarrow \Phi 4.5m)$

6 Large Shafts (Φ15m): Automatic Open-caisson.

Tunnel Merge without Shaft (Two Locations):

4 Utility Shaft (Φ3m): Reverse Circulation Drill

KEK 22km Route: An Example of Tunneling Plan

KEK 22km Route: An Example of Tunneling Plan (Many Other Options)

(*) Acc. Tunnel: Partially $\Phi 4.5 m$

	Klystron Tunnel:		Acc. Tunnel : Φ3.0m(*)			
Shield	Excavation		Shield	Excavation		
Machine	(kim)		Machine	(km)		
No. K1	5.0		No. A1	5.63	R=100m	
No. K2	5.2+08		No. A2	4.1	Merge with K5	
No. K3	5.2+0.8		No. A3	4.1	Marge with K6	
No. K4	5.0		No. A4	5.63	R=100m	
No. K5	1.1	Recycle A5	No. A5	0.7+0.8		
		Marge with A2				
No. K6	1.1	Recycle A6	No. A6	0.7+0.8	0.7km:Inclined	
		Marge with A3			Tunnel	
All	24.2		All	22.46		

KEK Route: Major Issues

- 1. Ground Vibration (Culture Noise): Measured at GL-80m (->Tauchi)
- 2. Long Term Stability (Drift) of Tunnels in Pleistocene Semimetal Layer.
- 3. Cost of Large Underground Experimental Hall: New Method?
- 4. Cost of Shield Tunnel in Japan:

Still Higher Than Other Countries.

1.5 - 2.0 x TBM.

- 5. "Accelerator" Partially Under Residential Areas of Tsukuba City:
- 6.,,,,,,,,
- 7. Future of KEK:

KEK Route: Experimental Hall

1. City NATM: Cheep but Feasibility with High Underground Water?

2. Diaphragm Wall Method: Feasible but Expensive.

3. Whale (Dinosaur) Bone Roof Method:

Very Interesting

But No Real Experience Yet.

KEK Route: Experimental Hall (Diaphragm Wall)

3 x Φ 50m Experimental Hall (31mΦx100mL) by Three Diaphram Walls

Shaft

Upper Gallery

Exp. Hall

Technology in R&D Stage:

"Wakunami" Tunnel ('01-'05)

$(30m \times 30m \times 60m)$

28mH x 28W x 6UmL A-A断面図 S=1/1,000

B-B断面図 S=1/1,000

KEK Route: Civil Engineering

Construction:

Tunnels and Shafts: Feasible. Many Options.

Various Advanced Shield Technologies.

Experimental Hall: Major Technical Issue (Dinosaurs Bone?)

Expensive.

Cost of Civil Engineering and Construction Time: 22 km

940 - 990M\$ (Experimental Hall*: 150 – 170M\$)

About 5 Years.

Not Much Depend on Details of Georogy.

(*)Diaphragm Wall, Φ50m.

KEK Route 33km:

Change Direction to
More North-South?

At South End:
Joban Highway
(Better than
Higashi Ohdori?)
JR Joban Railway
Tsuchiura City

JLC * Sites and Civil Engineering Summary or Plan

Site Study: Proposed A Review by Outside Experts of Various Fields.

(But When?)

Civil Engineering: Continue Case Studies for More Details.

Facility: Revision (for Consistent Estimate for X-band).

Start Case Studies.

(*) Now GLC