Coherent Synchrotron Radiation Issues

Juhao Wu

T.O. Raubenheimer, G.V. Stupakov, M.C. Ross, and J.C. Frisch

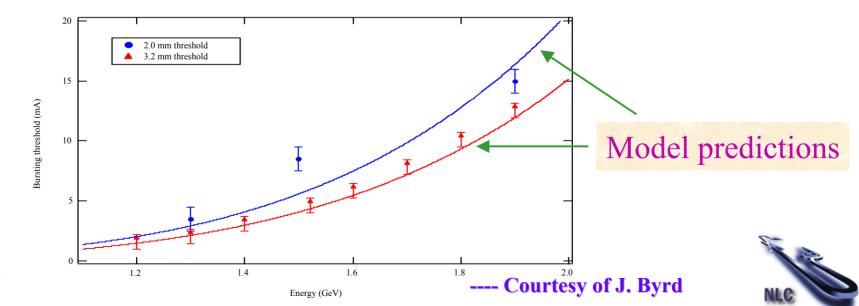
SLAC

June 20, 2003

Presented at the 10th International Study Group – (ISG - X) NLC Joint Meeting, SLAC, June 17 - 20, 2003

Motivations

- Recent studies indicate that Coherent Synchrotron Radiation could be a potential problem leading to an instability.
- ATF Damping ring is a good test bed for the existing theory and also for further studies.
- Existing experiments mostly study the CSR radiation, we need understand how the CSR radiation acting on the beam.
- Extracted beam measurements at ATF allow unprecedented energy spread measurements



We will study the effect on the beam NOT the light

CSR Instability

- Theory [Stupakov-Heifets, PRST-AB, 5 (2002) 054402] indicates a potential instability due to the CSR impedance from dipoles;
- Experimental observations [Byrd, et al., PRL 89 (2002) 224801; NSLS/BNL; BESSY-II]

CSR Impedance

- Free Space Impedance
 - Dipoles $(\alpha > 0)$ ([Murphy-Krinsky-Gluckstern, PA, 1997])

$$Z_D(k) = -i A k^{1/3} / R^{2/3}$$

$$A = 3^{-1/3} \Gamma(2/3)(\sqrt{3}i - 1)$$

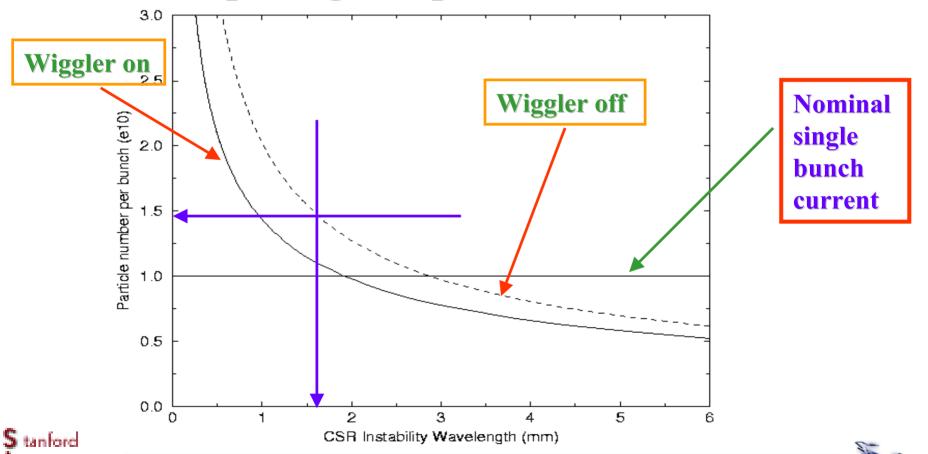
$$A = 3^{-1/3} \Gamma(2/3)(\sqrt{3} i - 1)$$

- Wigglers ($\alpha < 0$) ([Wu-Raubenheimer-Stupakov, PRST-AB,

2003])
$$Z_W(k) = \frac{K^2}{\gamma^2} \left\{ \frac{\pi k}{4} - \frac{i k}{2} \text{Log} \left[\frac{k}{k_{\text{FEL}}} \right] \right\}$$
 for $\frac{k}{k_{\text{FEL}}} \in (0, 0.1]$

$$\frac{k}{k_{\text{FEL}}} \in (0,0.1]$$

• Scaling $k^{1/3} \leftrightarrow \{k \text{ and } k \log[k]\}$

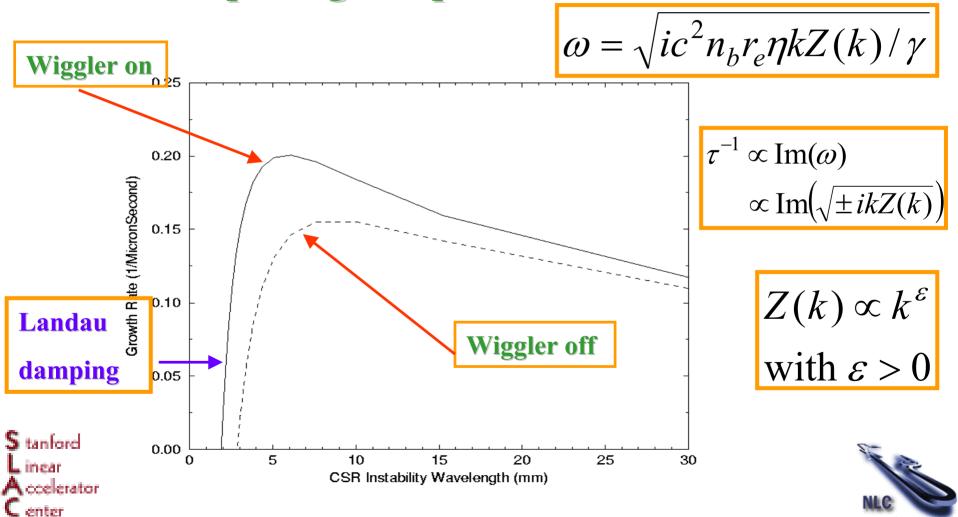

Dipole impedance dominates for long wavelength; **ATF wiggler-off operation mode is good!**

ATF Damping Ring

Threshold vs. wavelength

We hope to get experimental verification!

S tanford L inear A ccelerator C enter


Threshold determined by the longest wavelength

ATF Damping Ring

Growth Rate vs. wavelength

We hope to get experimental verification!

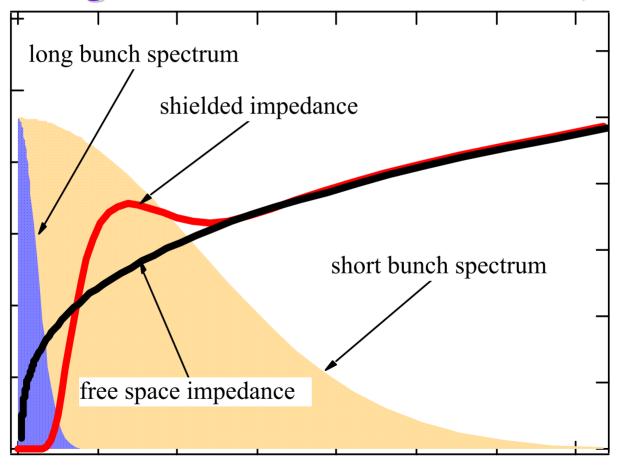
Shielding Cut-off

• Cut-off ([Stupakov-Kotelnikov, PRST-AB, 2003])

$$k \approx \frac{2.12}{a} \sqrt{\frac{R}{a}}$$

ATF parameters give

$$\lambda \approx 1.6 \,\mathrm{mm} \implies f \approx 187 \,\mathrm{GHz}$$


• High current operation mode, or local density fluctuations

Shielding Impedance

Shielding added as an ad hoc cutoff, but

CSR Power

Coherent enhancement

$$P_{CSR}(\lambda) = [1 + (N-1)f(\lambda)]P_{ISR}(\lambda)$$

Gaussian form factor

$$f(\lambda, \sigma_z) = \exp[-(2\pi\sigma_z)^2 / \lambda^2]$$

ATF parameters

$$\lambda = 1.6 \text{ mm}$$
,

$$\sigma_z = 5 \, \mathrm{mm}$$

$$(1.0 \times 10^{10} - 1) \exp \left[-\left(\frac{2\pi 5}{1.6}\right)^2 \right] = 3.67986 \times 10^{-158}$$

CSR Power

An estimate

Density perturbation

$$\hat{n}_1 e^{-i\omega s/c + ikz}$$

CSR-induced energy modulation

$$\delta = \frac{A\hat{n}_1 r_e c k^{1/3}}{\gamma R^{2/3} \omega(k)} e^{-i\omega s/c + ikz}$$

$$\Rightarrow f(1.6mm) \approx 2.5\%$$

Saturation

$$\delta \to \delta_0$$

$$\Longrightarrow$$

Estimated power

$$P_{ISR} \approx 0.35 \, \text{nW/mrad} \theta / \text{mm}$$

$$N = 2.0 \times 10^{10}$$

$$P_{CSR} \approx 0.17 \text{ W/mrad}\theta/\text{mm}$$

What will seed or initiate the modulation?

Future Issues

- Theory is relatively simple and need consider other effects
 - Other wakefields (seeding the modulation?)
 - Extend Vlasov to Vlasov-Fokker-Plank
- Verify shielding effect
- Single mode CSR? ([Heifets-Stupakov, 2003])
- Understand the quasi-periodic CSR bursting ([Venturini-Warnock, PRL, 2002])

Need Experiments to verify the existing theoretical understanding and also stimulate further studies

