Collimator Wakefields in the LC Context

“With the fire from the fireworks up above...”

ColITF 2002
17-Dec-2002
K. Bane,
D. Onoprienko,
T. Raubenheimer,
G. Stupakov,
P. Tenenbaum
Statement of the Problem

- Beam off-axis thru collimator excites dipole modes
 - deflects tail of bunch relative to head
 - Increases RMS beam jitter
 - Increases emittance
 - MPS issue (nonlinear kick – very big if beam is near the wall)
Two main contributions to wakefield

- Resistive wall wakefield
 - due to finite conductivity of collimators
 - Present even for perfectly regular vacuum pipe
 - Well developed, simple theory (but maybe not correct!)

- Geometric wakefield
 - due to change in vacuum chamber x-section at collimator
 - Fairly complicated, esp. for flat (x gap >> y gap or vice versa) collimator (like spoiler)
 - Level of “benchmarking” relatively low
• Near center of collimator: kick ~ beam-coll offset ($\Delta y' = Ky$)
 – Define wakefield jitter amplification factor A
 – n sigmas jitter incoming = $n(1+A^2)^{1/2}$ outgoing
 – Wake jitter out of phase of collimator (so collimators in FD phase cause IP phase jitter)
 – Near-center problem reduced to finding value of A
 – Energy collimator couples energy jitter to position jitter
 • $A_\delta \equiv \# \text{ sigmas} \times \text{jitter} / \% \text{ energy jitter}$
Finding “A”

- Assume collimators tapered in z, 20 mrad taper angle (θ)
- Define $r =$ half-gap, $h =$ half-width (x width of y collimator)
- Resistive:
 - tapered: $K \sim 1/(\theta r^2) * \sqrt{1/\sigma_z}$
 - untapered: $K \sim 1/r^3 * \sqrt{1/\sigma_z}$
- Geometric: 3 regimes for “flat” collimators
 - Steep taper: $K \sim 1/r^2$
 - moderate taper: $K \sim \theta^{1/2}/(\sigma_z^{1/2}r^{3/2})$
 - Shallow taper: $K \sim \theta h/(\sigma_z r^2)$
- 2 regimes for “round” collimators
 - steep taper: $K \sim 1/r^2$
 - shallow taper: $K \sim \theta/(\sigma_z r)$
TRC Calculations

• Use values from A. Drozhdin report (last updated September 2002)

• Assumptions:
 – Spoilers must be “flat” geometry with $h = 1$ cm (adjustability)
 – Absorbers can be “flat” or “round” (depends on aspect ratio)
 – All absorbers include a flat region (short for spoilers, long for absorbers)
 – All collimators copper coated (minimize resistive wakefield contribution)

• Read all about it:
Summary of Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TESLA</th>
<th></th>
<th></th>
<th>NLC</th>
<th></th>
<th></th>
<th>CLIC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A_x</td>
<td>A_y</td>
<td>A_δ</td>
<td>A_x</td>
<td>A_y</td>
<td>A_δ</td>
<td>A_x</td>
<td>A_y</td>
</tr>
<tr>
<td>δ Spoilers</td>
<td>0.0349</td>
<td>0.0540</td>
<td>0.2679</td>
<td>0.0010</td>
<td>0.0452</td>
<td>0.0532</td>
<td>0.0017</td>
<td>0.1552</td>
</tr>
<tr>
<td>δ Absorbers</td>
<td>0.0063</td>
<td>0.0335</td>
<td>0.0582</td>
<td>0.0053</td>
<td>0.0158</td>
<td>0.0192</td>
<td>0.0035</td>
<td>0.3676</td>
</tr>
<tr>
<td>β Spoilers</td>
<td>0.0655</td>
<td>0.5514</td>
<td>0</td>
<td>0.0805</td>
<td>0.5941</td>
<td>0</td>
<td>0.0988</td>
<td>1.6730</td>
</tr>
<tr>
<td>β Absorbers</td>
<td>0.0324</td>
<td>0.5145</td>
<td>0</td>
<td>0.0032</td>
<td>0.0135</td>
<td>0</td>
<td>0.1216</td>
<td>0.3270</td>
</tr>
<tr>
<td>FF Spoilers</td>
<td>0.0801</td>
<td>0.7260</td>
<td>0.0186</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0341</td>
<td>0.3210</td>
</tr>
<tr>
<td>FF Absorbers</td>
<td>0.0287</td>
<td>0.4563</td>
<td>0.0396</td>
<td>0.0624</td>
<td>0.5344</td>
<td>0.0019</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0.2478</td>
<td>2.3357</td>
<td>0.3472</td>
<td>0.1524</td>
<td>1.2029</td>
<td>0.0742</td>
<td>0.2596</td>
<td>2.8438</td>
</tr>
</tbody>
</table>

x, δ terms probably okay; y values excessive (IP jitter dominated by FD jitter and collimator wakes) – should get $A_y < 0.5$

Fractional emittance growth = $(0.4\text{nA})^2$, so maybe okay even in vertical

P. Tenenbaum
CollWake Test Facility

- Installed at 1.19 GeV point in SLAC linac
- Uses damped beam, $\sigma_z \sim 0.6$ mm
- Procedure:
 - Insert coll in beam path (x mover)
 - Move collimator vertically (y mover)
 - Measure deflection in SLAC linac
 - Fit kick angle vs coll-beam offset
First Tests

- **Tapered copper collimators**
 - study geometric kicks
- 1 “round” (square), 3 flat
 - 2 different apertures
 - 2 different taper angles
 - flat colls fairly “steep” tapers (per theory)
 - round coll more “shallow” taper
First Tests: Results

- **Round collimator:** good agreement with theory
- **Flat collimators:** not great
 - good agreement with MAFIA
 - in some cases, factor 2 disagreement between theory and experiment
 - Issues with intermediate regime
 - does it really exist?
Second Test

- 1 Cu tapered collimator
- 2 C (graphite) tapered collimators (courtesy of DESY)
 - direct check on graphite wakefields due to low conductivity
- To make a long story short: pretty good agreement with resistive wakefield theory
 - would like to do a better test with more signal from resistive wake
Third Test (coming soon!)

- 4 collimators with identical tapers
 - 2 Cu, 2 Ti (25 x resistivity of Cu)
 - 2 plain tapers, 2 with long flat section (1 m)
- Flat section of Ti should give kick of 2 V/pC/mm
 - compare to 1.5 V/pC/mm for Cu taper alone!
Future Tests

- Obvious problems with geometric wake theory
 - factor of 2 level
 - big factor for LC’s!
- Tests so far somewhat limited
 - uncertainty of TF performance
 - Alignment concerns
- Contemplating much tighter (1 mm) half-gaps
- More complex shapes
 - “two-step” taper?

![Graph showing kick factor vs. taper angle]

<table>
<thead>
<tr>
<th>Collimator</th>
<th>Geometric kick</th>
<th>Resistive kick</th>
<th>Total kick</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.7</td>
<td>0.2</td>
<td>4.9</td>
</tr>
<tr>
<td>2</td>
<td>7.3</td>
<td>0.1</td>
<td>7.4</td>
</tr>
<tr>
<td>3</td>
<td>9.0</td>
<td>small</td>
<td>9.0</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>0.6</td>
<td>3.1</td>
</tr>
</tbody>
</table>