NLC Damping Rings R&D

Note: Most of this work will be performed by LBNL, so has a Berkeley-centric flavor to it
The goal is to have a complete pre-conceptual design for the Damping Rings

- Accelerator physics developed to provide an optimized lattice that we are sure we can build
- Technology developed to
 - Lower technical risk
 - Lower cost risk, or at least understand the costs
- Design documented to
 - Provide understanding of the design
 - Make sure nothing’s been forgotten
 - Provide models that can be picked back up and used later
 - Provide enough detail to do a realistic cost model
- There are things we consider low priority until evidence to the contrary
 - The Positron Pre-damping Ring
 - Assuming the work done on the Damping Rings will easily apply
 - There is risk from the larger aperture required in the PPDR
 - Kickers are assumed to be low risk or technology-in-hand
The Accelerator Physics is true R&D

- Calculations and studies to optimize the DR lattice
 - Determine the optimum wiggler field and dynamic aperture including wiggler
 - Optimize lattice to meet physics requirements (damping time, bunch length, emittance)
 - Assess and minimize lattice sensitivity
 - Look at R/Q options in RF cavity to minimize phase gradients
 - Look at collective effects for single- and multi-bunch
 - Calculate electron cloud effects

- Experiments
 - Measure intra-beam scattering and min. achievable ε on ALS
 - Study low ε accelerator physics and do technical demos on ATF
The technology development is important to prove we can build the DR’s.

- **Vacuum technology**
 - Experiments to determine if low-outgassing Al is viable
 - Could reduce technical and cost risk
 - Study ways of reducing cost of vacuum systems, a big $ driver

- **RF cavity work**
 - Windows being prototyped for LANL, apply to NLC
 - Experiments with flame sprayed copper for forming cooling channels
 - Could replace expensive electroplating process

- **Permanent magnets - generic, but first aimed at Linac**
 - Tuning options development and evaluation
 - In-situ field position monitor
 - Radiation stability - an important issue for wigglers
The design documentation is important to record what we do and as a sanity check:

- **Vacuum systems**
 - Chambers - Arc sections and wiggler sections
 - These change as the requirements and designs of magnets and wigglers change
 - Pumping systems and photon stops

- **RF systems**
 - The cavity will be preserved as a 3D model that can be used later
 - Includes the window, coupler, coupler box, tuner, and HOM load
 - The machining of the cooling channels will be simulated in Pro-E

- **Hybrid wiggler** will evolve from an initial design to a more complete design as the Accelerator Physics work is done

- An overall model of the DR will be developed and maintained in Solid Edge