RDDS1 remains in the Klystron CMM where the distortion at both ends is being carefully mapped. The measured dimensions are being evaluated in Roger Jones' wakefield model, and a decision is expected shortly about whether a "repair" of the distortion is needed at either or both ends. The "repair" may be attempted either hot or cold, and/or in steps. A test will be done first. KEK suggested that a test could be done with the extra ends cells at KEK (still need diamond turning).

A cold test including a bead pull is now planned before any additional cells or couplers are brazed on. The fixturing to accomplish this is still being designed and fabricated - this should take one week. The cold testing may be delayed until after the braze run to bolster the strength and integrity of the diffusion bonding joints.

The thermocouple holes on RDDS1 were within eight cells of each end. Roger suggested that these be used to monitor operating temperatures in situ in the NLCTA.

There is no solid shipping date for the CPI loads. The target date is early March.

There was a discussion of the desirability of changing the WR62 flange (a Conflat) in the future since its strength after brazing is compromised. The other choices are the Skarpaas flange and a "crush" flange, or a hybrid. A sexless flange was suggested. Also, welding the flange on after brazing was an option. PEP II had successfully experimented with e-beam and alloy-assisted TIG welds on 304SS to copper. Improving the flange rigidity by increasing its thickness was suggested.

One of the items to be discussed next time is the overall plan and requirements to install RDDS1 into the NLCTA.