Transient behavior of NLC damping ring cavities

What’s Important?

- Voltage transient during gap
- Power dissipated in cavity and total power required
- Cavity wall power density
- HOM damping
Voltage transient

For step change I in beam current, transient voltage $V(t)$ given by:

$$V(t) = 2I_0 R(1-e^{-t})\sin(\omega_0 t)$$

where

$$R = \frac{R_s}{Q_o} \times Q_L$$

$$\tau = \frac{2Q_L}{\omega_0}$$

for

$$t << \tau$$

envelope is approx.:

$$V(t) = 2I_0 \frac{R_s}{Q_o} \times Q_L \times \frac{\omega_0}{2Q_L}$$

so

$$V(t) \propto \frac{R_s}{Q_o}$$

So we want to lower R/Q by about a factor of 10 to get acceptable phase variation along train.
Compare some cavity shapes:

<table>
<thead>
<tr>
<th>PEP-II type (714a)</th>
<th>714b</th>
<th>bell</th>
<th>TM020</th>
<th>sphere</th>
<th>sphere</th>
<th>sphere</th>
<th>sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of cells</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>R/Q (Ω)</td>
<td>117</td>
<td>118</td>
<td>73.0</td>
<td>52.3</td>
<td>25.5</td>
<td>25.5</td>
<td>9.42</td>
</tr>
<tr>
<td>“improvement”</td>
<td>1.00</td>
<td>0.99</td>
<td>1.60</td>
<td>2.24</td>
<td>4.59</td>
<td>3.44</td>
<td>12.42</td>
</tr>
<tr>
<td>power/cell (kW)</td>
<td>41.4</td>
<td>41.4</td>
<td>57.5</td>
<td>66.5</td>
<td>126.8</td>
<td>71.3</td>
<td>312.5</td>
</tr>
<tr>
<td>approx. total power (kW)</td>
<td>713</td>
<td>713</td>
<td>761</td>
<td>788</td>
<td>969</td>
<td>874</td>
<td>1526</td>
</tr>
<tr>
<td>max Pw (2D) W/cm²</td>
<td>23.0</td>
<td>22.0</td>
<td>25.4</td>
<td>24.5</td>
<td>56.1</td>
<td>31.5</td>
<td>144.0</td>
</tr>
<tr>
<td>12.5 cm pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reduce R/O by increasing transit time?

For pillbox R/Q goes to zero as length goes to nλ.

<table>
<thead>
<tr>
<th>Model</th>
<th>R/Q</th>
<th>Power Range (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM010</td>
<td>10</td>
<td>250-275</td>
</tr>
<tr>
<td>TM010</td>
<td>20</td>
<td>125-175</td>
</tr>
<tr>
<td>TM020</td>
<td>10</td>
<td>130-210</td>
</tr>
<tr>
<td>TM020</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(WQ</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>kW</td>
</tr>
</tbody>
</table>
Variation of pillbox parameters with length
(TM010 mode, URMEL calculations, 714 MHz)

Parameters of TM010 mode in pillbox as a function of length
Power required to maintain 500 kV gap voltage as a function of length and R/Q
Variation of pillbox parameters with length
(TM020 mode, URMEL calculations, 714 MHz)

Parameters of TM020 mode in pillbox as a function of length
Power required to maintain 500 kV gap voltage as a function of length and R/Q
<table>
<thead>
<tr>
<th>PEP-II type</th>
<th>714b</th>
<th>bell</th>
<th>TM020</th>
<th>sphere</th>
<th>sphere</th>
<th>sphere</th>
<th>sphere</th>
<th>TM020</th>
<th>sphere 12.5cm beam pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of cells</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>R/O (Ω)</td>
<td>117</td>
<td>116</td>
<td>73.0</td>
<td>52.3</td>
<td>25.5</td>
<td>25.5</td>
<td>25.5</td>
<td>1.623</td>
<td>9.42</td>
</tr>
<tr>
<td>0 Ω × 70%</td>
<td>25664</td>
<td>25663</td>
<td>29799</td>
<td>35916</td>
<td>41393</td>
<td>41393</td>
<td>41393</td>
<td>116679</td>
<td>42499</td>
</tr>
<tr>
<td>Rs(MΩ)</td>
<td>3.02</td>
<td>3.02</td>
<td>2.175</td>
<td>1.88</td>
<td>0.986</td>
<td>0.986</td>
<td>0.986</td>
<td>0.161</td>
<td>0.4</td>
</tr>
<tr>
<td>volts/cell</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>375</td>
<td>300</td>
<td>500</td>
<td>375</td>
<td>300</td>
</tr>
<tr>
<td>power/cell</td>
<td>41.4</td>
<td>41.4</td>
<td>57.5</td>
<td>66.5</td>
<td>126.0</td>
<td>71.3</td>
<td>45.6</td>
<td>690.6</td>
<td>312.5</td>
</tr>
<tr>
<td>beam power/cell</td>
<td>196.3</td>
<td>196.3</td>
<td>196.3</td>
<td>196.3</td>
<td>147.2</td>
<td>117.6</td>
<td>1.96</td>
<td>196.3</td>
<td>147.2</td>
</tr>
<tr>
<td>beta (1+Pb/Pc)</td>
<td>5.7</td>
<td>5.7</td>
<td>4.4</td>
<td>4.0</td>
<td>2.5</td>
<td>1.1</td>
<td>1.6</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>U (J)</td>
<td>0.240</td>
<td>0.240</td>
<td>0.362</td>
<td>0.532</td>
<td>1.170</td>
<td>0.656</td>
<td>0.421</td>
<td>17.2</td>
<td>2.96</td>
</tr>
<tr>
<td>Qmax wall power (2D) W/cm²</td>
<td>23.0</td>
<td>22.0</td>
<td>25.4</td>
<td>24.5</td>
<td>56.1</td>
<td>31.5</td>
<td>20.2</td>
<td>334.9</td>
<td>144</td>
</tr>
<tr>
<td>Improvement 0V/60 pspl type</td>
<td>1.00</td>
<td>0.99</td>
<td>1.60</td>
<td>2.24</td>
<td>4.59</td>
<td>3.44</td>
<td>2.75</td>
<td>72.09</td>
<td>12.42</td>
</tr>
</tbody>
</table>
HOM damping

TM010: cavity HOMs can be damped by same techniques as PEP-II
(large bore case may require dampers on beam pipe)

TM020: One or more modes below accelerating mode, will require coaxial load.
Many more modes in larger volume (- 74 cm diameter x ~ 68 cm length)
Conclusions

Factor of a few (maybe 5) could be possible with modified TM010 cavities, one klystron

New cavity design required, engineering challenges.

Factor of 10 may be possible using

TM020 cavity with long transit time, one klystron

4 spherical cavities with large bore, two klystrons

New cavity designs required, engineering challenges

Further questions

What about other modes, e.g.: **TM030, TM011**?

What about external energy storage cavity, e.g.: CERN, KEK-ARES?