NLC Magnets
Permanent Magnet Options

Bill Fowler, FNAL
Andy Ringwall, SLAC
Permanent vs. Electromagnet

Permanent Magnet Pro’s
- Eliminate or reduce power supplies (trim supplies)
- Substantial reduction of cableplant
- Eliminate or reduce magnet power dissipation, reduce op. cost
- No cooling water + conv. facilities
- No flow induced vibration from cooling water
- MPS (no coil shorts if all PM)

Permanent Magnet Con’s
- Extra capacity or use several styles to cover the energy range in Linac
- Limits beam energy flexibility
- Strength variation of a few % between PM blocks (requires measurement and matching)
- Center shift during BBA (1 um <)
- PM thermal coefficient (.03%~.2%; requires temperature compensator)
- Radiation resistances (Nd-Fe-B)
- More difficult to assemble in some cases

PM Material Choices

CERAMIC
- Strontium ferrite
- Inexpensive
- Radiation resistant
- Low Br, .38 T
- High temp coefficient, .2 % / C° (Br incr., Hc decr. w/ incr. temp)
- Brittle

RARE EARTH COBALT (REC)
- Sm-Co 1:5, 2:17
- Expensive
- Small industrial base
- Radiation resistant (2:17 good, 1:5 is worse)
- High Br, 1.05 T
- Low temp coefficient, .03% / C° (Br and Hc decr. w/ incr. temp)
- Brittle

Nd-Fe-B
- Ceramic < $ < REC
- Large industrial base
- Poor radiation resistance
- Highest Br, 1.2 T
- High temp coefficient, .1% / C°
- Ni plate to prevent corrosion
Hybrid Design
(Fermi Recycler Ring Magnets)

• Strontium ferrite “bricks”: large size, magnetized at Fermi
• Bricks excite steel poles; surrounded by an outer steel flux return
• Poles are either solid(special ingot processing) or stamped lams with a backing bar(helps spread flux longitudinally, prevents periodicity)
• Bricks isolate the poles from the flux return, so Al(precision drawn) spacers are used as supports between poles(also support mapping coil)
• Temp. compensator: Fe-Ni sheet(Curie point of 55 F, used in gas meters) placed between bricks along the magnet length
• Ground steel plate(1018) serves as outer flux return; “windmill pattern” allows plates to seat on PM; pin in place
• Steel tuning washers housed in SST tubes located at the four corners
• Core endplates(SST) have additional tuning washers plus end blocks for sextupole(CAM’d from initial map). Map using Morgan Coil
• Fiducialized by taking micrometer drops to precision Al spacers
• One assembly station built and tuned three magnets per day

PM Technical Issues

• Magnetic center shift during BBA
 – Gradient adjustment element shifts center
 • Shimming variation between poles
 • Backlash in rotation system
 • Material variations: permeability, hysteresis, coercive force
 – Fix by databasing this center shift(factor of two relaxation in tols?)
 • Requires accurate center measurement
 • Database implementation could be difficult
• Need modular design
 – Limits number of styles for main linac
 – Could use for upgrades
• Need to clarify tunnel temperature vs. time specifications
PM Cost Estimate

- Clarify revised CD-1 estimates (SLAC)
- Summarize “strung EM” model (SLAC)
 - Power supplies, cables, racks
 - Conv. Facilities: AC, alcoves, HVAC, LCW, other??
- Bottoms up estimate of Fermi hybrid design (rotating elements)
 - Magnet alone (Fermi)
 - Stepper installed cost (SLAC)
 - Facilities needs (SLAC)

Summary

Permanent Magnets for the NLC

- PM’s look promising (but devil is in the details):
 - Cost
 - Technical risk (PM’s less risky)
 - Potential impact on other systems leading to more cost savings
 - Existing experience at Fermi, up on the learning curve
- Meeting accomplishments:
 - Decided hybrid w/ PM adjustment elements was lead option
 - Better understanding of requirements by Fermi
 - Better understanding of hybrid design and manf. by SLAC
 - Mutual experience with PM materials (Ceramic, REC, Neo)
 - Preliminary discussion of solving hybrid technical issues
 - Center shift: techniques for balancing
 - Corrector: Use rare earth (avoids demag of ceramic)
 - Modular design: add and remove bricks as needed
Goals for 1/00 Meeting
(six working weeks)

- Cooperative program is the best way to proceed, exploit relative strengths of both labs
- Present cost comparison for NLC
 - Main linac
 - Other candidates (best effort basis)
- Present prototype design
 - Sufficient detail to initiate final design and procurement
 - Plan to build two prototypes
 - Proves reproducibility
 - Allows beamline testing (ASSET) in parallel with field testing
 - Use leftover PM material: bricks from Fermi, elements from SLAC
- Optimize and compare hybrid + trim coil option

Issues for Meeting 1/00 Goals

- Requirements verification (are we designing the right thing)
 - Main linac magnet, vacuum, BPM integration
 - Finalize magnetic requirements: Bpt, harmonics, mag. center
 - Revisit center shift tolerance during BBA
- Sufficient manpower vs. priorities
 - Fermi
 - SLAC
PM Prototype Goals

• Technical merits of PM option
 – Build, tune, and map a hybrid PM quadrupole based on ML 0.5Q12.75 capable of at least 20% strength adjustment
 – Show that the magnet center is stable to a few µm during adjustment
 – Show that the magnet’s strength is stable over time and temp range

• Cost savings of PM option
 – Develop “real” prototype costs to reinforce estimates
 – Establish learning curve for cost tradeoff’s for other candidates

• Other
 – Build mapping coil for small bore magnets; wire techniques
 – Advances SLAC/Fermi collaboration