Alignment Frame Progress at LLNL

Jeff Gronberg / LLNL
November 4th, 2003
NanoBPM meeting, KEK

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
LLNL builds an alignment and metrology frame for ATF BPMs

- **Basic idea:**
 - Create a structure that is inherently stiff to impose rigid body motion on 3 BPMs
 - Measure slow motion from thermal drift with a metrology frame

- **Hexapods are chosen for the alignment frame**
 - Based on an LLNL project for Extreme Ultraviolet Lithography
End plates and a center ring allow the BPM to be held symmetrically.

BPM

BPM clamps

Center ring

End plate

BPM assembly attached to hexapod struts

Jeff Gronberg
The solid metal flexure is the key to the design

- There are no joints in the assembly
 - Creates an extremely rigid structure
- Change in strut length from flexure allows limited range of adjustment in 6 degrees of freedom
Flexing allows limited adjustment of the BPM position in 6 dof

- Range of motion determined by maximum strain of the flexture
 - Hard limits prevent exceeding the limits
- LVDT provides readback of position
Hexapods are attached to an outer tube with motion adjustment.

First internal mode is at 200Hz
Assembly of the alignment frame has begun

- **Work done in 2003**
 - Designed and simulated the alignment frame
 - First vibrational mode at 200Hz
 - Procured all parts for the frame
 - Construction has begun

- **Work in 2004**
 - Finish frame assembly
 - Shaker table test
 - Confirm rigid body motion and vibrational modes
 - Install at ATF
 - Data taking
Outer tube is being characterized in the CMM machine
Assembly of struts has begun
ASSEMBLY SCHEDULE

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Machine Assembly</td>
<td>49 days</td>
<td>Thu 10/23/03</td>
<td>Tue 1/13/04</td>
</tr>
<tr>
<td>2</td>
<td>BPM Mech. Charac.& prgrming</td>
<td>7 days</td>
<td>Thu 10/23/03</td>
<td>Fri 10/31/03</td>
</tr>
<tr>
<td>3</td>
<td>Fixturing for assembly process</td>
<td>5 days</td>
<td>Thu 10/23/03</td>
<td>Wed 10/29/03</td>
</tr>
<tr>
<td>4</td>
<td>Asm & test BPM struts, mtr., LVDT</td>
<td>14 days</td>
<td>Thu 10/30/03</td>
<td>Tue 11/18/03</td>
</tr>
<tr>
<td>5</td>
<td>SLAC to provide BPM strut mtr cntrl</td>
<td>0 days</td>
<td>Mon 10/27/03</td>
<td>Mon 10/27/03</td>
</tr>
<tr>
<td>6</td>
<td>SLAC to provide lateral heaters</td>
<td>0 days</td>
<td>Wed 11/19/03</td>
<td>Wed 11/19/03</td>
</tr>
<tr>
<td>7</td>
<td>Asm hexapods</td>
<td>10 days</td>
<td>Wed 11/19/03</td>
<td>Fri 12/5/03</td>
</tr>
<tr>
<td>8</td>
<td>SLAC to provide tube strut mtr cntrl</td>
<td>0 days</td>
<td>Mon 11/24/03</td>
<td>Mon 11/24/03</td>
</tr>
<tr>
<td>9</td>
<td>Assm hexapods into tube</td>
<td>5 days</td>
<td>Mon 12/8/03</td>
<td>Fri 12/12/03</td>
</tr>
<tr>
<td>10</td>
<td>Final align, BPM's into tube</td>
<td>5 days</td>
<td>Mon 12/15/03</td>
<td>Fri 12/19/03</td>
</tr>
<tr>
<td>11</td>
<td>Shaker Test</td>
<td>5 days</td>
<td>Mon 12/29/03</td>
<td>Tue 1/6/04</td>
</tr>
<tr>
<td>12</td>
<td>Alignment check, attach bellows</td>
<td>5 days</td>
<td>Wed 1/7/04</td>
<td>Tue 1/13/04</td>
</tr>
</tbody>
</table>

Jeff Gronberg
The Shaker test will give us confidence in the system

- This idea depends on the BPMs being held as a rigid structure
- The Shaker test will let us know before installing at ATF if the frame will work
 - Each BPM will be instrumented with vibration sensor
 - We will confirm the rigid body motion
 - We will measure the resonant frequency of the fundamental mode and confirm the simulation
Alignment frame may be sufficient

- We expect that the BPMs will move on slow time scales due to thermal expansion
- If this is slow compared to the repetition rate of the ATF (<1nm / 10 bunches) it may be possible to correct offline

- We are designing a metrology frame to measure these motions
We reference to the outer ring instead of directly to the BPM

- There was no good place to attach a sensor reference
- Need to verify expected effect of thermal expansion
 - Since BPM is held symmetrically it should be ok
Outer support tube has access points for the sensors
Sensors with nm position resolution exist

- Optical grid with sub-nm position resolution has been purchased
- Design of carbon-fibre metrology frame to be done
- Needs detailed simulation and analysis if nm stability is to be achieved
Conclusion

• First priority – construction and delivery of alignment frame
 – Shaker test – January
 – Installation – February

• As time is available
 – Design of metrology frame
 – Procure prototypes and characterize