NLC Engineering Organization

NLC Conventional Facilities (J. Ives)

NLC Mechanical Systems (J. Cornuelle)

NLC Electrical Systems (R. Larsen)

Modulators

Sources
Vacuum
Magnets
Supports/Movers
Instruments
Facilities
Installation
Manufacturing
Protection Systems
Global Controls
Low Level RF

NLC Program Engineers

Plant Engineering
Metrology
Mechanical Design
Klystron
Power Conversion
Controls
LLNL & Bechtel NV
LBNL

R. S. Larsen 6/23/99
Page 2
Decisions after 1998
Modulator Workshop

• Adopt Dual Track development program
 – Baseline (Line Type)
 – Induction IGBT design

• Continue prototyping of 2-pack tank

• Support SBIR initiatives for incremental improvements

• Pursue 8-Pack design for major improvements
 – Efficiency
 – Reliability
 – Cost

• Establish strong collaboration with LLNL-Bechtel to accelerate progress
Decisions - Continued

- Develop full prototype for full power RF tests
- Procure industrial prototypes from two vendors
- Use 2-Pack as test bed
- Other Modulator Technologies: Retain interest in hybrid solid state possibilities:
 - Thyatron solid state substitution driving conventional transformers
 - Solid state on-off switches driving conventional transformers
 - IGBTs driving short stack induction transformer with multiple secondary
NLC Modulators
Baseline Cost Model

- 2-Pack line type modulator (2 Klystrons per Package)
- Proven design with low technical risk
- Current cost model for X band
- Scale for S & L bands
NLC Baseline Modulator

Thyratron
PFN Coil
PFN Capacitors
EOLC Diode
Klystrons
Expansion/Access Port
HV Cable
Pulse Transformer

TANK LAYOUT- Side View
NLC Baseline Modulator

X, S & L Band Load Comparison

<table>
<thead>
<tr>
<th>Modulator</th>
<th>No. Klystrons</th>
<th>Klystron Voltage</th>
<th>Current</th>
<th>P.Width</th>
<th>PRF-Hz</th>
<th>Avg Pwr</th>
<th>Est. Pwr</th>
<th>Qty for 0.5 TEV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Eff.</td>
<td>kV Peak</td>
<td>A - Peak</td>
<td>uSec</td>
<td>Out-kW</td>
<td>In-kW</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>X Band</td>
<td>2 @75 MW</td>
<td>60</td>
<td>490</td>
<td>510</td>
<td>1.5</td>
<td>120</td>
<td>45</td>
<td>75</td>
</tr>
<tr>
<td>S Band</td>
<td>1 @ 65 MW</td>
<td>50</td>
<td>350</td>
<td>373</td>
<td>5.0</td>
<td>120</td>
<td>78</td>
<td>156</td>
</tr>
<tr>
<td>L Band</td>
<td>1 @ 75 MW</td>
<td>50</td>
<td>388</td>
<td>387</td>
<td>6.0</td>
<td>120</td>
<td>108</td>
<td>216</td>
</tr>
</tbody>
</table>

*Assume 60% efficiency
**Assume 50% efficiency
NLC Modulators
R&D Goals 1

• Deficiencies of Line Type
 – Low energy efficiency ~60%
 – Thyatron switch tube lifetime and maintenance
 – High cost

• Goal 1: Develop 2-Pack
 – Proof of 500 kV driving 2 klystrons in parallel
 – Test bed for klystrons
 – Extend thyatron lifetime through re-design (SBIR program)
 – Investigate solid state switch alternatives (potential SBIR for hybrid line type or on-off switched capacitor)
 – Develop lower loss components for higher efficiency (Industry collaboration)
NLC Modulators
R&D Goals 2

• Goal 2: New Solid State design:
 – Efficiency >75% through faster switching & lower losses
 – Insulated Gate Bipolar Transistor (IGBT) high reliability
 – *Fail-soft* modular induction stack design
 – Lower cost ~ 2x in 8-Pack configuration

• Induction design capable of driving 8 klystrons.
• Partnership with LLNL & Bechtel to expedite design of full prototype.
NLC Modulators
R&D Goals 2

- R&D Plan: SLAC-LLNL - Bechtel Team
 - Test HV performance of basic cell mid FY99
 - Prototype stack test (1/4 full unit) end FY99
 - Full Prototype 500 kV 2000A test into dummy load mid FY00
 - Full Power RF NLCTA tests FY01-02
 - Fast track two industrial prototypes for delivery by mid FY02
R&D Plan Schedule
Baseline Modulator Production Cost Estimates

- **Basis of Estimate** - 2 Pack X & 1-Pack S&L
 - Bottoms up w/ vendor quotes & recent pricing for components in quantity ten (10) modulators
 - Add 10% vendor ED&I and 10% in-house ED&I = 117K$/Klystron
 - Apply learning curves
 - **X-Band 2-Pack unit quantity** = 117K$/klystron => 58.5K/Klystron
 - **S-Band 1-Pack unit quantity** = 264K$/klystron => 173K$/klystron
 - **L-Band 1-Pack unit quantity** = 300.3K$/klystron => 277K/Klystron
Baseline Modulator Production Cost Estimates

- X band uses a 2-Pack modulator, S&L bands are 1-Packs
- Assume 75/25 parts/labor and apply 92/85% Learning Curves
 - **X Band** 1800 2-Packs => 58.5 K$/klystron => 211M$
 - **S Band** 170 1-Packs => 173 K$/klystron = 29.4M$
 - **L-Band** 33 1-Packs => 277 K$/klystron = 9.1M$
8-Pack Induction Modulator
Production Cost Estimates

• Current pricing Metglas & IGBTs:
 • 20% total ED&I
 • 414 + 10 spares = 424 Units
 • => 970 K$/8-pack
 – Learning curves => 396K$ => $49.5K$/Klystron
 => $168M$

• Assume price drops in Metglas & IGBTs:
 – Learning curves => 168K$ => $21K$/Klystron => $71M$
Induction Modulator Production Cost Estimates

- Induction Modulator (8-Pack)
 - BLM: Baseline = 211M$
 - IM1: Conservative Model
 - IM2: Assumes future price reductions in Metglas & IGBTs

- Apply learning curves
 - $\text{IM1}= 970K$$\Rightarrow 49.5K$/Klystron$\Rightarrow 168M$
 - $\text{IM2}= 412K$$\Rightarrow 21k$/Klystron$\Rightarrow 71.3M$
NLC Modulators
R&D Risk Factors

• Baseline Modulator
 • Moderate technical and cost risks.
 • Moderate vendor & schedule risk.

• Solid State Modulator
 • Costs risks higher because of Metglas, IGBT price uncertainties
 • Higher schedule risk due to Metglas and IGBT new product suppliers.

• Common Technical Risk
 • Protection of multiple loads from arc in one load. Higher risk for 8-Pack due to higher stored energy. Protection must be bullet-proof.
Production Schedules

• Early industrialization needed to meet schedule.
 – Modulator Workshops, July 98, (see NLC Web page for papers & talks) and June 23-25, 1999, bring together researchers and industrial component and system integrator companies to discuss NLC requirements.

• Following Graph shows example production with 3-1/2 year installation schedule:
 – Monthly production (2-pack units)
 – Inventory (2-pack units)
 – Installation (Linac Sectors, 46 total)
Modulator Production Rates & Inventory: No. 2-Pack Units

M-K Mthly Production Cum Installation Modulator Inventory
<table>
<thead>
<tr>
<th>ISSUE</th>
<th>RESPONSE</th>
<th>WHO</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Klystron arc fault studies & protection circuit design</td>
<td>1. Measure arcs & evaluate klystron protection on NLCTA 2-klystron tests</td>
<td>Gold</td>
<td>2/99 start</td>
</tr>
<tr>
<td></td>
<td>2. Continue circuit modeling and arc simulations of 8-pack solid state model</td>
<td>Cassel/Nguyen</td>
<td>Ongoing</td>
</tr>
<tr>
<td>2. System considerations under klystron or thyatron faults</td>
<td>Evaluate overall linac beam stability achievable with assumed fault rates for both klystrons and thyatrons, for 1, 2, 4 and 8-pack designs</td>
<td>Gold/Cassel</td>
<td>FY99</td>
</tr>
<tr>
<td></td>
<td>2. Study Drive requirements and losses of SI Thyristors vs. IGBTs</td>
<td>Akemoto/Gold</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Study control & monitoring requirements of stacked SIs or IGBTs</td>
<td>Akemoto/Gold</td>
<td></td>
</tr>
<tr>
<td>4. Capacitor Development</td>
<td>1. Specify requirements for pulse capacitors for hybrid design (~80kV)</td>
<td>Akemoto</td>
<td>Ongoing</td>
</tr>
<tr>
<td></td>
<td>2. Research suppliers for capacitors @ 5kV for solid state design</td>
<td>DeLamare</td>
<td>Ongoing</td>
</tr>
<tr>
<td></td>
<td>3. Study capacitor reliability</td>
<td>Akemoto/DeLamare</td>
<td>Starting</td>
</tr>
<tr>
<td></td>
<td>4. Promote SBIR development</td>
<td>Gold</td>
<td></td>
</tr>
</tbody>
</table>

R. S. Larsen
6/23/99
Page 20
<table>
<thead>
<tr>
<th>5. Primary Power Supply Development</th>
<th>1. Develop power supply and distribution architecture for solid state modulator</th>
<th>Merritt/Cassel et al</th>
<th>Started</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Study power supply requirements for line or hybrid type stacked switch design</td>
<td>Gold/Akemoto</td>
<td>Started</td>
</tr>
<tr>
<td>6. Modulator-klystron (MK) Protection</td>
<td>1. Develop protection package and controller for line type & study applicability to solid state induction</td>
<td>Gold/Eichner</td>
<td>Ongoing</td>
</tr>
<tr>
<td>7. Diagnostics & Control</td>
<td>1. Specify requirements for triggering, monitoring of slow and fast waveforms, and controls for solid state induction unit</td>
<td>Cassel/Merritt et al</td>
<td>Not started</td>
</tr>
<tr>
<td></td>
<td>2. Design architecture and control/monitoring system to meet (1)</td>
<td>SLAC Controls Engr</td>
<td>Not started</td>
</tr>
<tr>
<td>8. Cooling Design</td>
<td>Design cooling architecture and strategy for solid state induction unit</td>
<td>Cassel/Merritt et al</td>
<td>Ongoing</td>
</tr>
</tbody>
</table>
KEK- SLAC ISG-3 R&D Workshop January, 1999 - c.

<table>
<thead>
<tr>
<th>No.</th>
<th>Task Description</th>
<th>Responsible Party</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>Packaging Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Complete design and prototyping of 2-Pack Tank</td>
<td>Gold</td>
<td>Ongoing</td>
</tr>
<tr>
<td></td>
<td>2. Design complete package for solid state induction unit</td>
<td>Merritt/Cassel et al</td>
<td>Started</td>
</tr>
<tr>
<td>10.</td>
<td>TWT Klystron Driver</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Evaluate TWT prototypes delivered from SBIR vendor.</td>
<td>Akre</td>
<td>Pending delivery</td>
</tr>
<tr>
<td></td>
<td>2. Investigate alternate suppliers for TWT drivers</td>
<td>Gold</td>
<td>Started</td>
</tr>
<tr>
<td></td>
<td>2. Design & build prototype TWT package for 8-pack full power testing support</td>
<td>Akre</td>
<td>FY00</td>
</tr>
<tr>
<td>11.</td>
<td>Vendor Investigations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Research availability, price and delivery of (a) prototype and (b) production</td>
<td>Akemoto</td>
<td>3/99</td>
</tr>
<tr>
<td></td>
<td>quantities of: **FineMet & Metglass induction transformer core material</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>**IGBTs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Investigate design improvements for pulse transformer for line type</td>
<td>Gold</td>
<td>6/99</td>
</tr>
</tbody>
</table>
Major Issues for Workshop Discussion

- Klystron protection on internal arcs - Both types
- Cooling designs - Both types
- Hybrid designs - Baseline
 - Solid state switch options
 - Low transformer ratio options
 - Other
- Hybrid Designs - Induction
 - Tradeoffs with various stack lengths and transformer configurations
- Cost optimization to minimize cost per klystron
- Reliability optimization - Both types
- Other
Induction Modulators
Discussion Issues - p.1

- 1. Capacitors:
 - Failure modes for pulsed operation, supplier list, cost optimization
- 2. Load Arc Protection
 - Fast turnoff & energy recovery, passive current limiting, other
- 3. Switches
 - IGBT cosmic problems, current limits, fast turnoff
- 4. Fuses/ Protection
 - Current zero switching, fusing, active switches - Ref. Maxwell
- 5. Metglas
 - Insulation, winding shorts, performance vs. aging, testing, production costs
Induction Modulators
Discussion Issues - p.2

• 6. Diodes:
 – Inadequacy as clamps for fast Tr
• 7. Board Layout:
 – Low L designs, contacts, manufacturing issues w/ 5 mil Cu
• 8. Induction Multi-Turn Stack
 – 1:2, 1:4 options, simulations, current strategy, mfg. Issues
• 9. Gate Drivers & Core Reset
 – Prototyping, simulations, delay control(?), opto-isolation
• 10. Power Supplies (4 kV, 250 kW/8-Pack)
 – DC Buck Regulator, Line Xfmr w/ multiple 2y, best eff’y, shielding(?), fanout/ protection, controls & safety design, turn-off mechanism on fault conditions
Baseline Modulator - SG

• Efficiency 61.5%
 – Can we do better? Waveform eff’y ~83%. Better for S&L?

• Costs
 – Charger 38.4% - how to reduce? Tank ass’y 46%

• PFN Tuning
 – Will factory cold tuning work?

• Industry collaboration
 – Components (in progress), Integrated systems, tank ass’y cost reduction issues.
SBIR Initiatives - RK

- Hybrid Modulators
 - Chargers, cap banks, solid state switches, pulse xfmr, thyratrons
- Chargers
 - More efficient designs with larger units?
- Capacitors
 - Can we fit cap bank in the tank design?
- IGBT Switches
 - Stacking options
- Pulse Transformers
 - Faster, more efficient designs? What are limitations?
Klystron Issues - RK

• Power vs Voltage
 – Ideally for power combiners tubes need to be matched
 – 2-pack idea - do it in factory
 – More of a problem for an 8-pack
 – We do not have a spec on matching. How good?
 – Do we need matching on ALL tubes in a group of 8?
 – What are servicing, maintenance implications?

• Lifetime
 – Early tubes likely to have MTBFs of 6-10k hours
 – 90% early failures will be arcing
 – Protection must be bulletproof
Hybrid Modulators - SG

Klystron Arcing

- IGBT Switch options, Other components
 - Faster speeds help efficiency
 - May allow more cap droop to reduce cap sizes
 - Pursue improvements in caps, HVPS, xfmrs to reduce costs

- Arc Protection
 - Arc studies show current pulses lasting for microseconds, 20-60J
 - Tests on single tubes and dual modulator tubes
 - NO APPARENT TUBE DAMAGE!
 - Theory: Arcs initiate briefly, form space charge limited plasma, & extinguish due to short pulse before causing catastrophic failure (R. Adler).
 - Suggests a worse problem for longer pulses (S&L)?
 - Must detect OC in EACH tube in a group for fast shutoff.
KEK Developments - M. Akemoto

- Line Type Solid State Switch Modulator
 - Developing a line type modulator using SI Thyristor (NGK Co.)
 - Thyratron replacement experiment
 - Tested 5-stack at 15 kV, 10 kA
 - $T_f \sim 128$ nsec 10-90%
 - 100A peak drive required per device
 - Goal: 45 kV stack
 - Availability of devices not known
 - nshimizu@ngk.co.jp
Thyratron Developments

- **EEV (C. Perry)**
 - New 4 gap tube meet 2 pack goals w/ target of 50k hrs lifetime
 - Oxide cathode 6 in dia.
 - Stabilized reservoir
 - Heater programming?
 - Tube no. 1 of 4 starts processing week of 6/28/99

- **Triton (T. Clymer(sp?))**
 - Current designs are Wagner derivatives
 - New 3 gap design for NLC ran to 60 kV
 - Delivered to SLAC for test
 - Dispenser cathode
 - Old tube went 44K hours
 - Expect price reductions in quantity
Modulators & Xfmrs
- R. Adler, North Star

- New Modulator Concepts & Tests
 - Parallel primary banks switched with thyatrons
 - 30 kV thyatrons operate in air
 - Hot tunable PFN w/ conventional caps
 - “Bi-Pyramidal” transformer
 - Standard rack packaging
 - Tested at 10 Hz into 900 Ohm load
 - Tr 450 ns, Tf 500-700 ns
 - Quantity pricing of components for cost estimates
 - Cautioned about application of learning curves - prefer quotes
 - Costs ~ $66K/tube @ 100 ea.
North Star - Cont’d

- IGBT Variant
 - 30MW proof of concept for 300MW
 - Differential cost analysis for IGBT fractional turn model driving multi-turn secondary 1/4=>50T
 - 4 sections w/ 1 Ohm striplines
 - W/ 30 devices competitive w/ 2-pack (~400ns Tr, Tf)
 - Eff’y 68% not incl. Charger
 - Lower costs
Solid State Alternatives
M. Kempkes, DT

• Solid State Modulators
 – 140 kV 500 A unit in operation at CPI
 – Long pulses, high power, crowbar works flawlessly
 – Up to 10 kHz, Tr~1 usec, 3.2MW supply

• NLC Hybrid Modulator Proposal
 – 80 kV 3.2 kA IGBT switch into 6:1 step-up
 – Peak power determines size
 – Costs of switch scale linearly with power reqmts
 – Switches very robust & fail-soft w/ redundant sections
 – Costs of PS and Xfmr vary with size
 – 400 nsec Tr, Tf in 6:1 (LV test)
 – Design has life cycle cost advantages
 – NEED DEFINITIONS FOR EFF’Y COMPARISONS
• Charging Supply (HV Charger)
 – Present: $100K, 10K hours
 – Achievable: $20K, 100K hours (1600 qty)
 – 10 yr Life cycle dominated by power costs
 – Cost tradeoffs versus size of components

• HV Buck Regulator
 – Building 3.2 MW for CPI (7/99)
 – 8-10 KHz operation
 – Conversion section very efficient
 – 3.2 MW avg drives 75 NLC Klystrons (9-8 packs, 1 NLC Sector)
 – Cost $3K/klystron in qty
 – Redundancy issues, distribution, outdoor vs indoor gear
• 500 KV Solid State Switch
 – Inverter=> CAP Multiplier=>IGBT switch=>Klystrons
 – Eliminates HV transformer
 best waveform efficiency
 – Design switch for low capacitance
 – Fit into 2-pack tank
 – Silicon costs scale w/ power. Turn-off “100% reliable”~680nsec

• IGBT Reliability
 – Switches ALWAYS fail short, so stack very robust
 – If klystrons gor to 300 kV, much more attractive & easier

• BIG QUESTION: EFFy OF CAP MULTIPLIER
 • Skeptics claim 50% max. Believers claim “very high.”
 (Maxwell will eventually have his due.)
Systems Issues
General Discussion

- Topology of a Sector
 - 72 klystrons in 9 groups of 8 in 50 m long alcove
 - Buck regulators with separate 2y xfmrs for each 8 pack
 - Can lose 8-pack but not a sector
 - May need redundancy at main xfmr-rectifier
 - Must be able to isolate for repair
 - Personnel safety requires disconnect under load
 - Proposal: Open Ross relay at 8-pack load point

- Custom IBGTs?
 - Need to work with established ocmpanies - they have the HV processes needed.
 - Companies will modify product for sufficient quantity, but we are not big enough customer for full custom product(?)
• Reliability
 – All proposed and present systems need more reliability analysis
 – IGBTs ~10^9 hrs; 100 ea ~ 10^7 hrs; w/ redundancy @ 10%
 goes to 10^11 hrs.
 – Connections and other machinery are main points of failure
 – Minimize parts counts and connections
 – Mil 217 analysis of the DT 140kV modulator is ~10^6 hrs

• Efficiency-Reliability-Cost (ERC)
 – Need to work up a table to compare the various proposals
 (homework)
 – Need a strong ERC incentive at this point to seriously explore a
 new concept.