Activities at KEK

NLC DoE Review at SLAC
May, 1999

Nobu Toge (KEK)

0. Introduction
1. Accelerating Structure
2. RF Power Creation and Distribution
3. Accelerator Test Facility
4. Conclusions
0. Introduction

See D. Burke's "NLC Overview" presentation for general introduction to the KEK-SLAC International Study Group (ISG) for joint pre-design efforts for a linear collider.

To iterate -

- Agreement on an R&D collaboration
- Sharing of tasks for expediting the progress based on common machine parameters:
 - @KEK
 - ATF
 - Fabrication and assembly of accelerating structure
 - @SLAC
 - NLCTA
 - Structure electrical design
 - Past and ongoing joint efforts
 - FFTB
 - DLDS development and testing
- All learning and technology to be made available to both parties under the protocol of: US-Japan agreement and SLAC-KEK MoU.
- Expecting to create inputs for taking the collaboration advanced in scope and participants in the near future.
- At this moment the exact form of the next-stage and/or ultimate collaboration is yet to be determined (e.g. JHEPC review in year 2000 in Japan, etc).
International Study Group (ISG) is a matching point of the R&D efforts / groups of the two labs:

Work-Group Coordinators for the KEK-SLAC ISG

<table>
<thead>
<tr>
<th>Parameter / Theory</th>
<th>Raubenheimer</th>
<th>Yokoya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injector systems</td>
<td>Sheppard</td>
<td>Hayano</td>
</tr>
<tr>
<td>Acc. Structure</td>
<td>Wang</td>
<td>Higo</td>
</tr>
<tr>
<td>RF power source & distribution</td>
<td>Vlieks / Tantawi</td>
<td>Chin</td>
</tr>
<tr>
<td>Modulator</td>
<td>Cassel</td>
<td>Akemoto</td>
</tr>
<tr>
<td>Interaction Region</td>
<td>Markiewicz</td>
<td>Tauchi</td>
</tr>
</tbody>
</table>

(Some other activities at each lab are conducted outside the scope of ISG)
1. Accelerating Structure

History

- Long-standing history in US-Japan collaboration.
- Unified scheme (DDS - Damped-Detuned Structure) has been jointly pursued since 1998.
- Successful assembly of DDS3 prototype structure in Japan, followed by beam testing at SLAC in 1997-98.
- Aggressive efforts towards realization of the first prototype structure based on the RDDS scheme (DDS with rounded cavity shape).

Status

- Design + building + testing techniques by and large at hand.
- Disk fabrication can satisfy approx +/− 1 µm tolerance.
- Diffusion bonding technique for the stack structure assembly has been successfully applied several times.
- Upon completion of the 1st RDDS prototype, the next step is
 (a) Refinement of the details of electrical design.
 (b) Assessment of manufacturing process with serious engineering eyes.
Description:
Serial No.:
Customer:

Element: PROFILE_CURV (2)
Department: MET-050

Form: 0.00192
Min. Deviat.: -0.00142
Max. Deviat.: 0.00050
Upper Toler.: 0.00200
Lower Toler.: -0.00200
Error Magnif.: 50
No. of points: 188

X Y Z Nr.
0.858 5.498 0.000 82
-2.462 10.983 0.000 170

Inspector:
Date: 12-MAR-98
Time: 10:28:45
Microsense data [microns]

Cell #

V-block

Structure
2. RF Power Creation and Distribution

History

- Delay-Line Distribution system for RF power distribution has been jointly pursued by KEK and SLAC since ~ 1997.

- Klystron modulators: Information exchanges exist concerning basic component testing and development.

- Close exchanges of ideas on RF windows exist. Klystron development is somewhat separately pursued at SLAC and KEK. Possibility of some joint technology reviews is being explored.

Status

- Basic testing of mode-launching and extraction has been completed at low-power level at KEK in '98-'99.

- Power transfer through a ~ 50m delay line will be tested at ATF/KEK in summer '99 jointly (low-power).

- Upon completion of the delay line test this summer, the next step will be

 (1) High-power component studies.
 (2) Thorough system assessment (safety, failure modes, design refinements, fabrication issues...
Relationship between the RF Power and Bunch Train

- Modulator pulse
- Klystron RF drive (also, output)
- Time

- 360 ns + switch time
- Pulsed RF power, delivered to each accelerating structure cluster
- Filling time = ~ 100 ns

- 1.5 nC x 95 x 2.8 ns, i.e. 260 ns
- Bunch train

- ~ 1.53 µs

#1, #2, #3, #4
2 x 2 multi-mode DLDS System under Development

Divides the RF pulse into 4 clusters for delivery.
Reduces the waveguide length by factor 2/3, compared to the single-mode DLDS.
2-mode DLDS Test Experiment Setup

"Serpentine" mode converter

TE11 -> TE01

TE01+TE11 mode launcher

TE01 mode extractor

TE01 in

TE11 in

TE01 out

TE11 out

TE01 in

TE01 out
3. ATF (Accelerator Test Facility)

History

- Project as a test bench for the low-energy portion of an LC in Japan, since 1992. It consists of a 1.54 GeV S-band linac, beam transport, damping ring and extraction line.

- 20-bunch/train mulch bunch operation in 1994, with successful demonstration of beam-loading compensation.

- Commissioning / beam development of the damping ring since 1997.

- Very strong presence of SLAC collaborators, together with other labs / institutes from in/outside Japan.

Status

- In a single-bunch mode operation, nearly design horizontal emittance approx 1×10^{-9} m has been achieved.

- Emittance coupling is 3 - 5 %, and requires more efforts to reach the target 1% level.

- Pilot studies of multi-bunch operation of DR has started.
The Compensating Structures

Total charge \(\sim 3.2 \times 10^{10}\) electron/ttrain

Energy Difference [%]

With ECS
Without ECS

Bunch Number
4. Conclusions

- KEK-SLAC collaboration on pre-design activities of an LC has been highly productive. A large amount of impressive progress has been made.

- Output of these efforts will become a basis for the discussion in Japan on how KEK and SLAC might formulate the near-future collaboration on more advanced-stage development of an LC design.