VACUUM ELECTRONICS

R. Humphrey

Other Contributors: E. Hamner, T. Porter, M. Neubauer, J. Weinberg, R. Larsen
VACUUM ELECTRONICS

• Status in June 98:
 – Completed Baseline Cost Model based on PEP II
 – Quad switching arc-protected modular power supplies of 3-5 kV @ 50 mA max. per channel
 – High voltage long-haul cables with multi-drops for smaller pumps (up to 10 per HVPS channel)
 – Sector model completed based on then-current model of distributed pumps for:
 • Linac structure: 18-500 l/s pumps/sector
 • DLDS: 75 l/s pumps
 • Klystron: 2-25 l/s pumps
 – Catalog sheets and Sector Cost Model completed
VACUUM ELECTRONICS

• Status in November 98:
 – Cost Model re-done for new pump configuration:
 • Alcove: 108 25 l/s pumps
 • Delay Lines: 144 - 75 l/s pumps
 • Manifolds: 9 - 75 l/s pumps
 • Beamline: 108 - 25 l/s pumps
 • Total/Sector: 369 Individual Pumps
 • Total/Main Linac: 16,974 Individual Pumps
 – 500 l/s turbo pump at each of 9 Alcove penetrations
 – Requirements for Injection & Beam Delivery still in development
VACUUM ELECTRONICS

• R&D Model:
 – 60% of Baseline cost is in HV long haul cable plant cables & connectors
 – Pump current necessary to pump down from 10E-4 Torr is 1-2 mA at 3-5 kV
 – With 25-75 l/s pumps, can utilize small individual supplies near the pumps if they can:
 • A. Withstand moderate irradiation (e.g. 8R/hr for 10 Yr)
 • B. Be made more cheaply than present system
 • C. Be made very reliable
VACUUM ELECTRONICS

• R&D Model:
 – *Advantage:* Current monitoring built into each pump supply module would give much better vacuum readout than possible with PEP system of ganged pumps on a single channel
 – *Disadvantage:* Need a radiation hard design that can withstand an integrated dose of ~1 MR over 10 or more years
 – An SBIR has been awarded for study of this architecture
 – SLAC will contribute a small amount of manpower
 – Cost goal: Reduction of at least 2X from current estimate of ~ $1M per Sector
VACUUM ELECTRONICS

• R&D Plan:
 – Analyze reliability of both PEP and proposed NLC models
 – Support SBIR analysis and modeling
 – Develop custom chip or chip set block design and specs to support rad hard HV module
 – Perform preliminary chip performance, layout and cost assessment