Costing Procedures
Plans for Risk Analysis
Contingency Estimation
Agenda

• Costing Approach/Procedures
 – Common/Generic System Teams Plus Special Areas
 – Cost Models
 – Written Guidelines

• Risk Analysis
 – Developing Plan for a Comprehensive Plan
 • Conventional Facilities Draft Plan Available
 – Modified U.S. Atlas Risk Scoring Approach
 – Cost Estimates: Point Estimates versus Probability Distributions

• Contingency Estimation
 – “Conventional” Approach
 – Monte Carlo Approach
Costing Approach/Procedures

- Cross-Functional Teams Formed for Common/Generic Systems
- Specialized Areas Covered Separately
- Objectives:
 - Ensure Nothing is Omitted or Duplicated
 - Construct Most Credible/Defensible Cost Model
 - “Standardize” Where Feasible; Highlight Differences Where Not
- Published Guidelines for Cost Estimating
 - Overall Philosophy, Format, Definitions, Make/Buy, Rates, “How Safe a Cost to Provide”, Accounting for Quantity, Reliability
- Cost Reviews
 - Automatic Peer Review in Cross-Functional Teams
 - SLAC Cost Reviews Underway (Three Month Rolling Schedule)
- Costing Approach Reasonably Well-Developed (Some Say Over-Developed) Considering Pre-Conceptual Phase
 - Cost Model Detail Proportional to Familiarity of Design
 - Costing Has Lagged Machine Changes
Risk Analysis Plans

• Eventually Need to Develop a Comprehensive Risk Plan
 – By Component, by Activity, by Project Phase
 – Cost, Schedule, Performance, Reliability
 – Internal Factors (e.g. Project Software Limitations) and External Factors (e.g. Environmental Impact)

• Currently, Only Dealing with Cost Estimate Risk
 – Modified U.S. Atlas Risk Scoring Methodology
 • Performed at Component/Task Level by Estimator
 • Concept is That Cost Risk is Mirrored by Scoring Five Attributes:
 – Design Risk, Design Maturity, Supplier Risk, Cost Estimate Maturity, Schedule Risk Each Scored From 1 to 10
 • Input and Analyzed Using ACCESS Database
 – In Parallel, Using Probabilistic Costs to Bracket Point Estimates
 • Direct Estimate of Possible Range in Cost of Item
Point Estimates Plus Risk Scoring versus Probability Distributions

• **Point Estimates**
 – Point Estimates Requested at the 50% Point (50% Chance of a Higher Number) to do Some Normalization
 – Database of Risk Scores Makes Sorting and Analysis Easy
 – Converting Risk Scores Into Defensible Predictors of Actual Cost Exposure/Risk is Very Problematical
 • Have Established Algorithm to Calculate Contingency

• **Probability Distributions**
 – Just Ask Estimator For the Possible Range in Cost Due to Any and All Factors
 – No Other Algorithm or Manipulation Needed
Contingency Estimation
“Conventional” Approach

- Performed at Project Manager Level (Not by Estimators)
- Algorithm Runs Inside ACCESS Using Risk Scores
 - High Scores are Emphasized; Low Scores De-Emphasized
 - Baseline Algorithm is Cubic
 - Scoring is Weighted: Technical and Manufacturing High (100);
 Schedule Low (20); Others at 40-50
- Contingency Generated at 30% Level for Total Project
 with Little Normalizing
Contingency Estimation
Appraisal of “Conventional” Approach

• Advantages
 – Common Approach for DOE Projects
 • Familiar and Comfortable to Reviewers
 • Fairly Straightforward to Generate Risk Scores

• Disadvantages
 – No Proof or Evidence That This Approach Generates the Appropriate Contingency
 – Considerable Experience That This Approach Does Not Always Work
 – Dynamic Range Always Less Than Reality Provides For

• Premise
 – We Must Adopt an Approach That is Bullet-Proof
Contingency Estimation
Monte Carlo Approach

- Single Point Estimates are Replaced by the Range of Possible Costs from Each Estimator
- Each Range Has Defined Probabilities of Occurrence
- The Range of Possible Total Project Costs is Generated by a Monte Carlo Simulation of All the Project Activities/Items
- The Contingency is Automatically Generated Along With a Probability of Occurrence
Monte Carlo Example
(Using $2.9 B of Lehman Costs)

NLC Monte Carlo Histogram Results
All Hardware and All Conventional Facilities Completely Correlated Within Themselves

Probability of Cost Within Histogram Interval

Probability of a Lower Cost

CD-1 = $2.9 B
Mean = $3.1 B

Cumulative Probability

Total Project Cost in $B

Cost Estimation and Analysis
Factors Affecting Choice of Contingency Mechanism

• Problems with Point Estimates to Generate a Contingency
 – Unacceptable per OMB Rules (OMB Circular A-94)
 • Will Fail to Pass an Independent Project Review
 – Not Recommended for Major Projects by Project Management/Risk Literature
 – Dynamic Range Always Less Than Reality Provides For
 – Allows Risk Information to Remain Buried Within Point Estimates
 – Cause Every Other DOE Project Difficulty

• Problems with Probabilistic Approach
 – Not Established DOE Practice
 – Obtaining Probability Distributions Requires Much More Work
 – More Complex, Different, and Sometimes Arbitrary Approach

• Benefits of Probabilistic Approach
 – Contingency Becomes Automatic and Defensible
 – Dollar Consequence of Uncertainty and Risk Explicitly Quantified
Summary

• Continue to Refine Machine/Project Costing
• Risk Scoring à la U.S. Atlas Will be Performed
• Contingency Calculation Based on Risk Scores Will be Performed
• Probability Distributions on Major Cost Items (~20-30) Will be Obtained
• Contingency Calculation Based on a Monte Carlo of These Distributions Will be Performed