NLC Accelerator Physics

NLC Lehman Review
May 24 – 28, 1999
Outline

• State of design—CD-1 Model
• Outstanding accelerator physics issues to be addressed during CDR phase
• Plans for the CDR phase

• Address charge:
 – readiness to begin conceptual design
 – planning and schedule for CDR
 – structure to manage CDR
Luminosity in Linear Colliders

\[L = \frac{f_{\text{rep}}}{4\pi} \frac{n_b N^2}{\sigma_x \sigma_y} H_D \]

In a linear collider

\[L = \frac{2P_b}{4\pi E_{\text{cms}}} \frac{N}{\sigma_x} \frac{H_D}{\sigma_y} \]

- \(P_b \) is the beam power
- \(H_D \) is the luminosity enhancement
- \((N / \sigma_x) \) is proportional to the beamstrahlung (backgrounds)

⇒ Three issues for LC: energy, spot size, and beam power
NLC History

- NLC design based on experience from the SLC
- Informal collaboration of ~ 60 people at 16 institutions
- 1st pass at:
 - physics and design verification
 - parameter optimization
 - tolerance and performance specification
- ZDR cost model → route to further optimization
- ZDR → framework for present design → CD-1 Model
NLC Schematic

- Consists of:
 - e+ source and polarized e- source to produce high-current bunch trains
 - damping rings for small emittances
 - bunch compressors for short bunches
 - X-band linacs to attain high gradient acceleration for high energy
 - collimation section to remove large amplitude particles
 - final focus for small spots
 - two IPs for alternate experiments
Energy Upgrade Scenarios

• 500 GeV → 1 TeV (design optimized for 1 TeV)
 – Add rf power sources and acc. structures to 2nd half of linacs
 – Quadrupoles already in place for 1 TeV
 – Collimation and FF designed for 350 GeV → 1 TeV (although permanent magnet FD must be replaced at ~ 750 GeV)
 – 500 GeV parameters have looser linac tolerances for faster commissioning—all components are specified for 1 TeV tolerances

• 1 TeV → 1.5 TeV (lots of options!)
 – Increase gradient or lengthen linacs (many possible routes)
 – FF layout designed for 1.5 TeV (shielding, length, etc.) but need to replace 10\% of magnets and shift beam line by ~ 10 cm
500 GeV and 1 TeV Parameters

<table>
<thead>
<tr>
<th>IP Parameters for the JLC / NLC (8/8/98)</th>
<th>500 GeV</th>
<th>1 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>CMS Energy (GeV)</td>
<td>535</td>
<td>515</td>
</tr>
<tr>
<td>Luminosity (10^{33})</td>
<td>7.7</td>
<td>7</td>
</tr>
<tr>
<td>Repetition Rate (Hz)</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Bunch Charge (10^{10})</td>
<td>0.75</td>
<td>0.95</td>
</tr>
<tr>
<td>Bunches/RF Pulse</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Bunch Separation (ns)</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Eff. Gradient (MV/m)</td>
<td>57.2</td>
<td>55</td>
</tr>
<tr>
<td>Injected $\gamma_x / \gamma_y (10^{-6})$</td>
<td>300 / 3</td>
<td>300 / 3</td>
</tr>
<tr>
<td>γ_x at IP (10^{8} m-rad)</td>
<td>400</td>
<td>450</td>
</tr>
<tr>
<td>γ_y at IP (10^{8} m-rad)</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>β_x / β_y at IP (mm)</td>
<td>10 / 0.1</td>
<td>12 / 0.12</td>
</tr>
<tr>
<td>σ_x / σ_y at IP (nm)</td>
<td>277 / 3.4</td>
<td>330 / 4.9</td>
</tr>
<tr>
<td>σ_z at IP (um)</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>Υ ave</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>Pinch Enhancement</td>
<td>1.41</td>
<td>1.36</td>
</tr>
<tr>
<td>Beamstrahlung δB (%)</td>
<td>4.5</td>
<td>4</td>
</tr>
<tr>
<td>Photons per e+/e-</td>
<td>1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

From Accelerator Physics pages in NLC www area
Design Parameter Space and Margins

• Operating plane over which $L \sim$ constant but current, final focus optics, and spot sizes vary by $\sim 50\%$ (similar to SLC experience)
 – component requirements set by tightest tolerances in range
• Allow for 1.4 ns or 2.8 ns bunch spacing to trade multi-bunch vs. single-bunch ε dilutions and backgrounds
• Systems are all specified with additional overheads to produce better beams than required—for example:
 – E- injector designed to produce 40% additional charge
 – Linac tolerances do not assume emittance correction
• Luminosity would more than double using overheads
Possible 1.5 TeV Parameters

- Two upgrade paths listed:
 (A) increase linac gradient
 (B) increase linac length
- Limit ac power to ~ 200 MW
- Linac tunnel cross-section sized for Two-Beam Acc. option

<table>
<thead>
<tr>
<th>IP Parameters for the JLC / NLC</th>
<th>1.5 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>CMS Energy (GeV)</td>
<td>1406</td>
</tr>
<tr>
<td>Luminosity (10^{33})</td>
<td>14</td>
</tr>
<tr>
<td>Repetition Rate (Hz)</td>
<td>60</td>
</tr>
<tr>
<td>Bunch Charge (10^{10})</td>
<td>1.4</td>
</tr>
<tr>
<td>Bunches/RF Pulse</td>
<td>95</td>
</tr>
<tr>
<td>Bunch Separation (ns)</td>
<td>2.8</td>
</tr>
<tr>
<td>Eff. Gradient (MV/m)</td>
<td>77</td>
</tr>
<tr>
<td>Injected $\gamma/e_x / \gamma/e_y$ (10^{-8})</td>
<td>300 / 3</td>
</tr>
<tr>
<td>γ/e_x at IP (10^{-8} m-rad)</td>
<td>450</td>
</tr>
<tr>
<td>γ/e_y at IP (10^{-8} m-rad)</td>
<td>14</td>
</tr>
<tr>
<td>β_x / β_y at IP (mm)</td>
<td>15 / 0.2</td>
</tr>
<tr>
<td>σ_x / σ_y at IP (nm)</td>
<td>220 / 4.5</td>
</tr>
<tr>
<td>σ_z at IP (um)</td>
<td>130</td>
</tr>
<tr>
<td>Yave</td>
<td>0.6</td>
</tr>
<tr>
<td>Pinch Enhancement</td>
<td>1.6</td>
</tr>
<tr>
<td>Beamstrahlung δB (%)</td>
<td>22</td>
</tr>
<tr>
<td>Photons per e+/$e-$</td>
<td>2.1</td>
</tr>
</tbody>
</table>
State of Accelerator Physics Design

• ZDR parameters re-optimized to reduce rf system costs
• Collaboration established with KEK: Optimized common parameter set developed together

• Optics designs for roughly 30 miles of beamline
 – specified subsystem requirements
 – designs have all beamline elements (rf structures, magnets, diagnostics, correctors)
 – common ‘toolkit’ for lattice design and simulation, and, process for configuration control
 – have 1st pass on all tolerances—working on next iteration!
 – prioritized further work and problem areas (not too many!)
State of Accelerator Physics Design (2)

- First pass at reviewing and improving ZDR physics models and tolerance calculations \rightarrow CD-1 Model
- Starting to look at further cost and performance optimization
- Test facilities have addressed fundamental questions

\Rightarrow Ready to start CDR!
Accelerator Physics Issues for CDR

- Two issues:
 - Energy (rf technology – Chris Adolphsen)
 - Luminosity (small spots & beam power)

- Beam power (long bunch trains):
 - charge from sources (John Sheppard)
 - long-range wakefields

- Small spot sizes:
 - low emittance damping rings
 - final focus system
 - alignment and jitter tolerances
 - beam-based alignment and feedback

- Both issues: (very high charge densities)
 - beam collimation and machine protection
Injector System Layout

- E+/E- sources to generate required charge but large $\gamma \varepsilon$
- Accelerate in low f_{rf} linacs for low wakes and big apertures
- Damping rings and bunch compressors to generate the required emittances and bunch lengths—also damp transients for stable beam and allow for feed-forward
- Geometry of system allows for polarized positrons or polarized electrons on either side (allow need solenoids)
- Geometry also allows linac expansion in future
- Centralized injector system considered in future to share components and ease maintenance
Damping Rings

• Damping rings like 3rd generation SR sources with similar problems except require faster damping:
• ZDR damping rings needed re-design because of parameter change—longer bunch trains
 – Lattice without combined-function dipole magnets
 – Increase momentum compaction and increase RF voltage by including more wiggler (25m → 45m)
 – Increased vacuum and ante-chamber apertures for reduced impedance and easier beam handling
• R&D started on kickers, wiggler, and RF cavities
• Have not re-done dynamic aperture optimization or instability calculations but ZDR demonstrated feasibility
Main Linac Layout

- Linacs consists of repetitive sectors of roughly 230 meters
- Rf power from klystron gallery
- Three 1.8 meter accelerator structure per rf girder
- Quadrupole magnets spaced by 1, 2, and finally 3 rf girders
- All elements on remote movers for alignment
- Two extra diagnostic regions along linac
Long-Range Wakefields and Accelerator Structure Designs

- Choose parameters to optimize energy transfer to beam at high gradient but beams induce ‘wakefields’ in structures.

- Longitudinal wakefield causes energy variation along bunch train—compensated by adjusting rf pulse amplitude (and phase)—verified in NLCTA!

- Transverse wakefields cause Beam Break-Up instability and can make linac inoperable!

- Careful design of the structures to ensure small transverse wakefields and eliminate problem by design.

- Issues are different in L-band, S-band, and X-band linacs.
Rounded Damped-Detuned X-band Accelerator Structures (RDDS)

- Need to damp or decohere long-range dipole modes to prevent the Beam Break-Up instability
- Each X-band structure has 206 cells, each with a different dipole mode frequency
- Manifolds provide signal for beam-based alignment
- Latest structure design: RDDS has cells with +12% shunt impedance
Accelerator Structures

- (R)DDS structures use detuning combined with weak damping to control dipole modes
- Dipole modes rapid decay due to detuning and damping keeps them that way!
- Structures designed using 3-D field calculations and 2-band circuit model
- Very good agreement between calculation and measurements

← factor of 100 decay in 1st ns
Final Focus and Interaction Region

• Focus beams to the very small spot sizes
• Final focus is a scaled up model of the Final Focus Test Beam (FFTB) beamline—FFTB demonstrated greater demagnification than needed for NLC

• Need to design a stable support for the final magnets with ~1nm vibration at frequencies greater than a few Hz
• Length of system: IP switch, big bend, final focus, is roughly 2.5 km—driven by synchrotron radiation effects at high energy
Alignment and Time Scales

- Interested in alignment at micron level
- Sounds small but motion at high frequency >10 Hz is in nanometer range
- In few cases, high frequency stability might be provided with active stabilization
- Use beam to diagnose low frequency alignment errors
- Relies on accurate diagnostics and correction
 ⇒ We have them!
Beam-Based Alignment

- Movers developed for Final Focus Test Beam (FFTB) have steps \(\sim 0.5\mu m \)

- Stripline Beam Position Monitors (BPMs) for FFTB have \(<1\mu m\) resolution and rf cavity BPMs have 40nm resolution

- All elements from damping rings downstream have independent power supplies and are on magnet movers
Collimation System and MPS

- Collimation system and machine protection (MPS) intimately related (see discussion tomorrow)
- Collimation system consists of two parts:
 - Pre-linac collimation at the end of the pre-linac (10 GeV)
 - Main collimation at end of main linac
- Pre-linac system is ‘easy’
- Main collimation system is hard because high density beams will destroy materials (linac beam: $\Delta T \sim 8 \times 10^5 ^\circ C$!)
 \[\Rightarrow \text{increase beam size but makes optics difficult!} \]
- ZDR system was designed to have passive protection but had very tight tolerances—working on new design
Post-Linac Collimation System

- **Single Pulse Collimator Damage**
 - Never
 - Seldom
 - Always

- **Optics Tolerances**
 - Tighter
 - Looser

- **Consumable Collimators**
 - Damaged $\sim 1000 \times$ per year

- **Renewable Collimators**
 - Damaged each pulse

- **Conventional Collimators**
 - Not damaged

- **ZDR**
Accelerator Physics Tasks for CDR

• Additional lattice design work:
 – Collimation system
 – Final extraction line
 – Damping rings

• Tuning optimization:
 – All quads and sextupoles have independent power supplies—is this necessary?
 – Verify BPM specifications for feedback and tuning and performance with jitter and errors
Accelerator Physics Tasks for CDR (2)

• Update Component Specification and Tolerances:
 – Balance emittance, charge, and jitter budgets
 – Update detailed tolerance calculations

• System Cost Optimization:
 – Central injector
 – Radiation levels from halos
 – Damping rings and bunch compressors
 – Linac structures and rf system
 – Beam delivery
Accelerator Physics Tasks for CDR (3)

• **Beam Physics:**
 – Update damping ring impedance calculations
 – Update simulations of instabilities in beam lines and damping rings
 – Finalize RDDS structure wakefields and tolerances
 – Update ground motion measurements and models
 – Further study of beam-based feedback systems
 – Evaluate failure scenarios for MPS
 – Beam tails, material limits, wakefield calculations for collimators
 – Model backgrounds from beam in final focus and dump line

• **Documentation!**
Accelerator Physics Process

- System requirements
- Physics verification and system concept
- Preliminary design
- Optimized design – cost, risk, reliability
- Final conceptual design

Multi-step process
- Performance model
- Cost model
- Risk evaluation
- Reliability optimization

Close interaction of engineers, systems managers, and accelerator physicists

Starting this stage now!

Using web to enhance communication and make information accessible
Accelerator Physics Group

- Karl Bane
- John Corlett
- Paul Emma
- Linda Hendrickson
- Roger Jones
- Kiyoshi Kubo
- Zenghai Li
- Cho Ng
- Yuri Nosochkov
- Nan Phinney
- Tor Raubenheimer
- Gennady Stupakov
- Peter Tenenbaum
- Kathy Thompson
- Mark Woodley
- Kaoru Yokoya
Schedule for CDR

- Accelerator physics milestones defined to provide information to area managers
- R&D programs designed to produce results needed for accelerator physics design decisions
- Schedule driven by annual reviews when CDx Model is updated
- Component layout and specifications completed by 5/01—one year before CDR
- Detailed tuning studies and optimization during final year
High-level schedules in Appendix

More detail to be discussed tomorrow in breakout sessions
High-level Milestones for CDR

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/99</td>
<td>Central injector option</td>
</tr>
<tr>
<td></td>
<td>DR & BC energy choice</td>
</tr>
<tr>
<td></td>
<td>S- & L-band structure</td>
</tr>
<tr>
<td></td>
<td>DR wiggler & rf cavity</td>
</tr>
<tr>
<td></td>
<td>S- & L- rf layout</td>
</tr>
<tr>
<td>2/00</td>
<td>Collimator wakefield exp.</td>
</tr>
<tr>
<td>5/00</td>
<td>S- & L-band linac optics</td>
</tr>
<tr>
<td></td>
<td>Prelim. MDR optics</td>
</tr>
<tr>
<td></td>
<td>BC optics</td>
</tr>
<tr>
<td></td>
<td>FF vacuum req.</td>
</tr>
<tr>
<td></td>
<td>Main linac rf layout</td>
</tr>
<tr>
<td>11/00</td>
<td>MDR optics</td>
</tr>
<tr>
<td></td>
<td>Pre-linac coll. optics</td>
</tr>
<tr>
<td></td>
<td>Main linac optics</td>
</tr>
<tr>
<td></td>
<td>FF optics</td>
</tr>
<tr>
<td></td>
<td>Prelim. collimation optics</td>
</tr>
<tr>
<td>2/01</td>
<td>Collimator material study</td>
</tr>
<tr>
<td>5/01</td>
<td>PPDR optics</td>
</tr>
<tr>
<td></td>
<td>Collimation optics</td>
</tr>
<tr>
<td></td>
<td>FF tolerances</td>
</tr>
<tr>
<td></td>
<td>Detailed tuning, loading, and tolerances studies</td>
</tr>
<tr>
<td>5/02</td>
<td>CDR draft</td>
</tr>
</tbody>
</table>
Summary

- Ready to begin CDR:
 - System requirements are defined
 - 95% of beamline lattices exist
 - Tools are in place for lattice design and control
 - Design has sufficient flexibility and ‘overhead’ so facility can be used beyond NLC goals!
 - Cost optimization has begun based on cost model and reviews with area physicists and engineers
 - Plans to address outstanding R&D are clear and backup solutions exist if necessary!

⇒ It is time to start!