NLC Collimation

Collaboration Meeting
February--March 2001

“The line between the devil’s teeth and that which cannot be repeat”
Collimation Task Force

With special thanks to:

J. Irwin, W.R. Nelson, D. Walz, F. Zimmermann
Requirements of Collimation

- Remove particles which cause backgrounds
- Limit backgrounds from collimation muons
- Machine Protection from linac faults
 - energy
 - betatron
- Survive linac faults
- Limit Halo Regeneration
 - wakefields
 - nonlinear optics
 - scattering in BDS
- Limit wakefield luminosity loss from collimators
 - jitter amplification
 - emittance dilution
- Do not Fundamentally limit BDS energy reach!
Collimation Locations

- **Sources**
 - at sources
 - at 250 MeV point
 - at 2 GeV point

- **Injector Linacs**
 - β: 2 GeV point
 - d: 8 GeV point

- **Post main linac**
 - before FF

- **Final Focus**
 - high β points
Collimation Amplitude

- **Fundamental limit:** FD
 - Quad SR \rightarrow VTX
- **Acceptance:**
 - x^\ast**: $\pm 240 \mu$rad
 - y^\ast**: $\pm 1000 \mu$rad
 - rectangular in $(x'y')^\ast$
- $x^\ast = 5.9 \text{ mrad}$
 - Assume $\pm 1\%$ energy acceptance
 - uses $\pm 59 \mu$rad x'^\ast aperture
- **500 GeV CM, max θ'^\asts:**
 - x: $\pm 4.8 \text{ s}$
 - y: $\pm 17.7 \text{ s}$
Muon Production

- Limits total population of halo acceptable
 - expect \(<10^7\ e^\pm /\) train
- Assume use of 2 iron muon spoilers
 - “tunnel-fillers”
- Detector limits:
 - zero/train too few
 - 1000/train too many?
- 500 GeV CM: \(\sim 10^9\) halo / train \(\rightarrow\) \(\sim 10\ \mu /\) train
 - design to this number
- Also constrains transmission
 - \(< 10^{-5}\) required
Surviving Linac Faults

- Expect frequent energy faults with no warning
 - too many pulsed devices
- Expect few beta faults with some warning
- Use spoilers to protect absorbers, as in ZDR
- Energy spoilers need passive survival
- Beta spoilers do not need passive survival
 - “consumable” spoilers (more on this later)

Damage mechanism: pulsed heating from beam-matter interaction

Acceptable ΔT limits not clear
Experiments underway (more on this later)

P. Tenenbaum
Spoiler Gap Size

- **Fundamental minimum**
 - Fatigue damage due to image currents on surface ("I^2R" heating)

- **Limits unclear**
 - Expt: 120°C rise x 10^7 shots = damage in Cu (single shot limit ~180°C)
 - Conservative: use 10% of approx. single-shot limit
 - Be or Cu: 60-90 µm half gap acceptable
 - Other materials: 300-500 µm half-gap indicated
The Basic Design

- Collimate energy and betatron halo separately
- Halo $< 10^9 / \text{train reduced 5 orders of magnitude}$
- $\pm 1\%$ energy acceptance
- $4.8 \, s_x, 17.7 \, s_y$ collimation at 500 GeV CM
- 2 phases, 2 planes, 2 times
- Spoilers protect absorbers
- Energy spoilers survive impact of full bunch train
- No big bend / arc -- only doglegs / chicanes
The Basic Design (2)

- **Spoiler Parameters:**
 - **Energy:** 1.2 mm adjustable half-gap, Be or C or Ti
 - **Betatron:** 150-350 µm adjustable half-gap, Be/Cu

- **Absorber Parameters:**
 - **Energy:** 2 mm adjustable half-gap, Ti/Cu
 - **Betatron:** 1 mm fixed radius, Ti/Cu, round

- **SR emittance dilution @ 1 TeV CM:**
 - 3% in energy collimation, 2% in “cleanup” dogleg

- **Pulsed Extraction Magnet in Energy Coll**
 - downstream of energy diagnostics
 - useful during linac commissioning

- **2 families of sextupoles, 2 families of octupoles**
 - all magnets reasonable
The Basic Design (3) -- Optics
Simulation Studies

• Optical Performance
 – good bandwidth for beam core
 – dynamic aperture marginal
 • high-order chromogeometric aberration found
 • might be in FF or Coll system
 • More studies coming

• Halo Transmission
 – \(\sim 4 \times 10^{-5} \) with 0.5 RL spoilers
 – \(<1 \times 10^{-5} \) with 1.0 RL spoilers
 – Some optimization still possible
Fundamental R&D Issues

• **Collimator Wakefields**
 - How bad? Geometric vs resistive vs surface finish? Near-wall wakefields?
 - Next talk!

• **Materials for Spoilers**
 - Damage limits? Wakefields (from resistivity)?

• **Design and engineering of spoilers**
 - consumable
 - renewable
Spoiler Materials

• Main issue is damage from pulsed heating
 – very hard to calculate

• A problem all over NLC
 – main linac: single-pulse damage to structures during startup
 – Positron target: single-pulse and fatigue damage

• Addressed by coupon “death ray” tests in FFTB
Materials Considerations (2)

Results from “Death Ray I” Copper Coupon Tests

- **Expect damage when** \(\sqrt{E_{\text{max}}} \approx 10^5 \text{ e} \pm / \mu\text{m}^2 \)

- **No damage on some shots with** \(\sqrt{E_{\text{max}}} \approx 10^7 \text{ e} \pm / \mu\text{m}^2 \)

- **Cu may tolerate single shots with much higher density than we plan**

- **Ongoing tests of other materials**
Spoiler Design + Engineering

“Consumable”

- Easier to design, build
 - rotating wheel spoiler

- Relies on assumptions:
 - linac fault rate
 - single-pulse damage limit
 - fatigue damage limit

- Requires minimum beam stay-clear (fatigue)

- Some materials science
 - bonding Be to Cu -- done

“Renewable”

- Hard to design, build
 - liquid metals, cooling, heating, moving parts in vacuum, liquid metal pumps

- More forgiving on assumptions

- Permits much smaller minimum stay-clear
 - can be damaged on every linac pulse

- Lots of materials science

P. Tenenbaum
Consumable Spoiler

- First prototype in shops

- Study
 - stability
 - placement accuracy
 - UHV performance
 - diagnostics
 - Overall mechanical viability of design

- Looks promising so far
Renewable Spoilers

- **Materials selected**
 - Liquid Tin collimation surface with Niobium wheel

- **Prototype**
 - In progress!
Conclusions

• Post-linac coll: Reasonable design exists

• Several non-simulation R & D projects

• LCC-Note-0052 now available
 – print it double-sided
Open Issues

- Spoiler Wakefields
- Damage Thresholds
- Spoiler Materials
- Spoiler Thickness
- Halo Populations
- Dynamic Aperture
- Tolerances

- Iterations of collimation
 - trades length, jitter budget against attenuation of halo

- Addition of nonlinear optics
 - improve protection but degrade optics performance