Reliability Engineering History

Number of Components/System $f(t)$

Time of Application
Reliability Engineering: Why worry about reliability?

- Well managed reliability programs pay-off:
 - Discover failure modes during design and development
 - Discover mission critical failure modes
 - Simplify and improve designs
 - Provide solid base for design improvements
 - Provides LOWEST COST of ownership

![Cost of Ownership Graph](image_url)
NLC Reliability Engineering
Data Sources
NLC Reliability Engineering
Data Sources

• Common reliability tools found to be in use in most companies and governments:
 – Inductive (Bottoms Up Analysis):
 • Reliability Analysis Math Models
 • Failure Modes and Effects Analysis (FMEA)
 – Deductive (Top Down Analysis):
 • Reliability Block Diagrams (RBD)
 • Availability Allocation
 • Logistics Support Analysis Report (LSAR)
Reliability Analysis Flow Chart

Phases:
- Design
- Production
- Operation

Design Review

Reliability Block Diagram

Failure Modes and Effects Analysis

Math Models and Reliability
Allocations:
- MTF
- Failure Rates
- MTTR
- Availability

Data Sources:
- MIL-HDBKs
- Bellcore
- Manufacturer

Benchmarks based on the SLC:
- DC Magnet Power Supply Reliability Study

Project Planning and Coordination

- We are currently in this phase.
5045 Klystron-Pulse Tank System RBD

SLC 5045 Klystron–Pulse Tank System RBD
18JUL97 WBS#: 1.5.3.2
Duane Reliability Growth (5045 Klystron)

- This model assumes that the plot of MTBF versus time is a straight line when it is plotted on log-log paper.
- It should be noted that the model assumes that a change or fix in the design is immediate.
Example FMEA

<table>
<thead>
<tr>
<th>Part Name & Number</th>
<th>Potential Failure Mode</th>
<th>Potential Effects of Failure</th>
<th>Potential Causes of Failure</th>
<th>Severity Ranking Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klystron-Pulse Tank Assembly</td>
<td>Provide rf power to amplify and accelerate the electron beam</td>
<td>Loss of RF Power</td>
<td>Loss of Function, Possible failure of sector resulting in machine downtime</td>
<td>5 Gun ceramic failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 RF window failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 Unstable rf output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 Vacuum leak</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 Gassey cathode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 Mechanical failure of water system</td>
</tr>
</tbody>
</table>

System Name: Stanford Linear Collider
Subsystem Name: RF Power Sources
Component: Klystron-Pulse Tank
Design Responsibility: Klystron Department
Suppliers & Groups Affected: SLC Operations
Other Areas Involved:
WBS#:
Prepared By: Zane Wilson
FMEA Date (Orig): 7/10/97
Engineering Release Date: Jun-94
Severity Ranking Table:
1. None: No effect
2. Minor: Functional & performing; loss of cosmetic functions
3. Low: Operable but at a reduced level of performance
4. High: Operable but at a reduced level; loss of control functions
5. Very High: Inoperable - loss of primary function
Example FMEA (Cont.)

Failure Mode and Effects Analysis

Design FMEA

<table>
<thead>
<tr>
<th>Occurrence Rating Table</th>
<th>Detection Ranking Table</th>
<th>Iteration #: 003</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 VERY HIGH: Must be addressed (Rate: 1×10^{-5})</td>
<td>5 VERY HIGH UNCERTAINTY</td>
<td></td>
</tr>
<tr>
<td>4 HIGH: Cause frequent downtime (Rate: 3×10^{-6})</td>
<td>4 HIGH UNCERTAINTY</td>
<td></td>
</tr>
<tr>
<td>3 MODERATE: Cause some downtime (Rate: 1×10^{-6})</td>
<td>3 LOW UNCERTAINTY</td>
<td></td>
</tr>
<tr>
<td>2 LOW: Cause very little downtime (Rate: 3×10^{-7})</td>
<td>2 VERY LOW UNCERTAINTY</td>
<td></td>
</tr>
<tr>
<td>1 REMOTE: Failure unlikely (Rate: 1×10^{-7})</td>
<td>1 NO UNCERTAINTY</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Evaluation Technique</th>
<th>DET</th>
<th>RPN</th>
<th>WHEN</th>
<th>WHY</th>
<th>Recommended Actions</th>
<th>Corrective Actions</th>
<th>Area/Individual Responsible & Completion Data</th>
<th>Action Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test, breakup of rf</td>
<td>1</td>
<td>25</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test, rf fault trips</td>
<td>1</td>
<td>25</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test, rf breakup</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum readings</td>
<td>1</td>
<td>15</td>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n/a</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual inspection, rf breakup, material assurance</td>
<td>2</td>
<td>20</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Choice Table: Used for pull downs

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 VERY HIGH UNCERTAINTY</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 HIGH UNCERTAINTY</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 LOW UNCERTAINTY</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 VERY LOW UNCERTAINTY</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 NO UNCERTAINTY</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Planning and Coordination

Z. Wilson
Criticality Analysis

Criticality Matrix

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>REMOTE</th>
<th>LOW</th>
<th>MODERATE</th>
<th>HIGH</th>
<th>VERY HIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>REMOTE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LOW</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MODERATE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HIGH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>VERY HIGH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MINOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NONE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
When & Why Matrix

When & Why Matrix

Why

Quantity

Manufacturer Defect Design Defect Radiation Temperature Humidity Vibration Lack of QA/QC Personnel Stress

Design
Fabrication
Transit/Installation
Post-installation

Z. Wilson
Reliability, Maintainability, Availability Program

- **CDR Goals**
 - Identify RMA activities and tools.
 - Define RMA requirements, including Design Reference Mission.
 - Develop availability requirements budget.
 - Identify critical systems for RMA engineering.
 - Start development, test and evaluation programs.
 - Validate RMA budgets.
 - Develop Failure Reporting Analysis and Corrective Action System (FRACAS).