BASELINE MODULATOR

Presented by Saul L. Gold

Contributors:
R Budlong, JP Eichner, RF Koontz, A Krasnykh,
NLC Review- Baseline Modulator

- Baseline- build today
- Develop Cost Model
- Approach
 - Conventional Modulator
 - Compromise of cost, reliability, efficiency and performance
 - 1 modulator per 2 Klystrons
NLC Review- Baseline Modulator

- Design Overview
 - Conventional Modulator
 - 1:14 Pulse Transformer
 - Single oil tank- Depot maintenance
 - Rack mount support electronics including Charging Power Supply
 - Charge Voltage: up to 80 kV
Baseline Modulator Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Desired</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Klystron Voltage</td>
<td>500 kV</td>
<td>500 kV</td>
</tr>
<tr>
<td>Total Peak Current</td>
<td>530 A</td>
<td>530 A</td>
</tr>
<tr>
<td>Pulse Width (usable FT)</td>
<td>1.5 µs</td>
<td>1.5 µs</td>
</tr>
<tr>
<td>Pulse Top Flatness</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Pulse Top Ripple</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Pulse-pulse Ripple</td>
<td>0.1%</td>
<td>0.25%</td>
</tr>
<tr>
<td>Pulse-pulse Jitter</td>
<td>1 ns</td>
<td>10 ns</td>
</tr>
<tr>
<td>P.R.F.</td>
<td>120 Hz</td>
<td>120 Hz</td>
</tr>
</tbody>
</table>
Baseline Modulator Requirements (cont.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Desired</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging Voltage</td>
<td>80kV mx.</td>
<td>80kV mx.</td>
</tr>
<tr>
<td>Charging Supply Pwr.</td>
<td>65 KW</td>
<td>75 KW</td>
</tr>
<tr>
<td>Charging Supply Effic.</td>
<td>95+%</td>
<td>90%</td>
</tr>
<tr>
<td>Overall Efficiency</td>
<td>75%</td>
<td>61.5%</td>
</tr>
<tr>
<td>Reliability (MTBF)</td>
<td>15,000hr</td>
<td>8,100hr</td>
</tr>
</tbody>
</table>
Basic Modulator Block Diagram
NLC Review- Baseline Modulator

- Areas of Investigation
 - Energy Storage Capacitors
 - Pulse Transformers
 - Switches
 - Layout
 – Size, Maintainability, cost, etc.
 - Efficiency
NLC Review - Baseline Modulator

Thyratron

Pulse Transformer

PFN

Test Bed Tank
NLC Review- Baseline Modulator

Test Bed w/ Parallel Plate Connection
NLC Review- Baseline Modulator

- **Energy Storage Capacitors**
 - Studied Russian Glass Capacitors
 - Small size, high energy density
 - High dielectric constant - 1000
 - 5 nF, 80 kV (2 in series)
 - Assembled inductance ~50nH
 - Losses appeared high 5-8%
 - Good waveshape - 300+nsec risetime
 - Usable output efficiency w/PT - 83%
NLC Review- Baseline Modulator

- Run single glass capacitor @ 40-41 kV
 - Failed after approx. 9 hours
- Believe capacitors will run @ 75-80% rating
- Maximum history w/film Capacitors
 - Purchased film capacitors
 - Mutual inductance PFN helps overcome internal inductance of capacitor
Figure 1 PFN assembly with Sicond k15-10 capacitors

Figure 1 Two types of PFN with Maxwell capacitors
NLC Review - Baseline Modulator

- Studying Polypropylene Film Capacitors
 - 10 nF, 80 kV
 - Assembled inductance ~90 nH
 - Losses low 1-2%
 - Good waveshape, <400 nsec risetime
 - Usable output efficiency w/PT- 80+%

- Preliminary specification written
NLC Review - Baseline Modulator

Output PFN Voltage on 4.8 Ohms Resistive Load (Sicond Cap’s)

Output PFN Voltage on 9.6 Ohms Resistive Load (Maxwell Cap’s)
NLC Review- Baseline Modulator

- **Pulse Transformer**
 - 1:14 ratio
 - Stangenes design
 - 2 mil core material
 - Reduced clearance margin from 5045
 - Risetime approached 300 nsec
 - North Star Research design
 - Double basket
 - Rise time slightly longer than Stangenes
- Preliminary specification written
NLC Review- Baseline Modulator

Stangenes Transformer Configuration

North Star Research Transformer Configuration
NLC Review - Baseline Modulator

Pulse Transformer Comparison

<table>
<thead>
<tr>
<th></th>
<th>Conventional Transformer (Stangenes)</th>
<th>Double Basket Transformer (North Star)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed Capacitance (air)</td>
<td>84 pF</td>
<td>110 pF</td>
</tr>
<tr>
<td>Leakage Inductance</td>
<td>100-110 µH</td>
<td>100-110 µH</td>
</tr>
</tbody>
</table>
NLC Review- Baseline Modulator

- Switch research
 - At these levels thyatron seems to be best present technology
 - Presently using EEV 4 gap, 100kV, cx2593
 - runs good w/double pulse trigger
 - EEV has 3 gap thyatron to try, CX1937
 - Thyatron reliability an issue
 - Spec given to vendors, need to pursue
NLC Review- Baseline Modulator

- Efficiency
 - Tests performed @60Hz in Test bed w/ 5045 klystron as load
 - operated TL (Temp. Limited) to simulate PPM
 - combinations of:
 - glass or film capacitor PFN’s
 - Stangenes or North Star transformer
 - 4-gap or 2-gap thyatron
 - Determine areas of loss
 - Output waveform, pulse transformer, PFN and feed, thyra tron
LC Review - Baseline Modulator

- Modulator Efficiency Terms
 - Power Supply Efficiency
 - Pulse Power Transfer Efficiency
 - Waveform Efficiency
NLC Review - Baseline Modulator

Klystron Beam Voltage and Current

Maxwell Capacitors w/ Stangenes Transformer

Waveform Eff. \(\sim 81\% \)

Russian Capacitors w/ Stangenes Transformer

Waveform Eff. \(\sim 83\% \)
Charge and Energy Balance

Stangenes Transformer

(Second Capacitors)

(CX 1836 two gap thyatron)

<table>
<thead>
<tr>
<th>Charging Process</th>
<th>Total charge delivered to PFN</th>
<th>μC</th>
<th>8578.53</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy to charge PFN</td>
<td>J</td>
<td>145.4407</td>
</tr>
<tr>
<td></td>
<td>Total discharge charge</td>
<td>μC</td>
<td>8578.53</td>
</tr>
<tr>
<td></td>
<td>Total PFN discharge energy on primary side</td>
<td>J (%)</td>
<td>139.3429 (95.81)</td>
</tr>
<tr>
<td></td>
<td>Total losses in the primary side:</td>
<td>J (%)</td>
<td>10.95627 (7.53)</td>
</tr>
<tr>
<td>Primary Discharge Process</td>
<td>Including:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thyratron</td>
<td>J (%)</td>
<td>4.858446 (3.34)</td>
</tr>
<tr>
<td></td>
<td>PFN + mismatch +etc.</td>
<td>J (%)</td>
<td>6.097829 (4.19)</td>
</tr>
<tr>
<td></td>
<td>The charge delivered into the beam</td>
<td>μC</td>
<td>544.9607</td>
</tr>
<tr>
<td></td>
<td>Reflected primary charge (turn ratio is 14:1)</td>
<td>μC</td>
<td>7629.45</td>
</tr>
<tr>
<td></td>
<td>Total energy delivered into klystron beam</td>
<td>J (%)</td>
<td>128.3996 (88.28)</td>
</tr>
<tr>
<td></td>
<td>Total energy losses in transformer</td>
<td>J (%)</td>
<td>6.084837 (4.37)</td>
</tr>
</tbody>
</table>
Charge and Energy Balance

(CX 1836 two gap thyratron)
(Conventional Stangenes Transformer)
(Maxwell capacitors)

<table>
<thead>
<tr>
<th>Charging Process</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total charge delivered to PFN</td>
<td>mC</td>
</tr>
<tr>
<td>Energy to charge PFN</td>
<td>J</td>
</tr>
<tr>
<td>Total discharge charge</td>
<td>mC</td>
</tr>
<tr>
<td>Total PFN discharge energy on primary side</td>
<td>J (%)</td>
</tr>
<tr>
<td>Total losses in the primary side:</td>
<td>J (%)</td>
</tr>
<tr>
<td>Including:</td>
<td></td>
</tr>
<tr>
<td>Thyratron</td>
<td>J (%)</td>
</tr>
<tr>
<td>PFN + mismatch +etc.</td>
<td>J (%)</td>
</tr>
<tr>
<td>The charge delivered into the beam</td>
<td>µC</td>
</tr>
<tr>
<td>Reflected primary charge (turn ratio is 14:1)</td>
<td>mC</td>
</tr>
<tr>
<td>Total energy delivered into klystron beam</td>
<td>J (%)</td>
</tr>
<tr>
<td>Total energy losses in transformer</td>
<td>J (%)</td>
</tr>
</tbody>
</table>
NLC Review - Baseline Modulator

Capacitor Pulse Discharge

Energy Loss

<table>
<thead>
<tr>
<th>Capacitor Type</th>
<th>600 Volt.</th>
<th>3 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mica</td>
<td>1.3%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Ceramic</td>
<td>4.5%</td>
<td>10.5%</td>
</tr>
<tr>
<td>Oil Filled Film</td>
<td>2.6%</td>
<td>-0.2%</td>
</tr>
<tr>
<td>Russian Glass</td>
<td>6.25%</td>
<td>6.5%</td>
</tr>
</tbody>
</table>
NLC Review - Baseline Modulator

Pulse Power Transfer

- **Eff1 = Pout/Pin**
 - (est. 90%)

- **Eff2 = Pulse Pwr out/Pin**
 - (meas. 80-91.5%)

Total Efficiency = Eff1 x Eff2 x Eff3

- \(0.9 \times 0.88 \times 0.8 = 0.633\) or 63.3%

Waveform Efficiency

- **Eff3 = Pwr Pulse Top/PwrTotal Pulse**
 - (meas. 80-83%)

Basic Modulator Efficiency
NLC Review - Baseline Modulator

- **Layout**

 ![Diagram of a device with labeled parts: klystrons and access port with dimensions 44" and 72".](image)

 - klystrons
 - Access port

Klystron/Microwave Department
Electronic/Microwave Engineering
NLC Review- Baseline Modulator

- Tank Layout in process
 - Design for manufacturability
 - Design for performance
 - Design to minimize cost
- Depot Maintenance
 - Thyra tron field replacement- contingency
THYRATRON ASSEMBLY

1 - Anode Can
2 - Thyatron Mounting Base
3 - Connectors
4 - Grad. Divider (does not shown)
5 - Cap. Mntg. Basket
6 - Cathode Socket Ring
7 - Anode Socket Ring
8 - Anode Socket Ring
9 - Plate Standoffs (solid)
10 - Plate Standoffs (hollow)
11 - Ferrite Cores (do not shown)
12 - Thyatron Cathode Socket
13 - Thyatron Mntg Plate

Oil Mvr. Assy, Misc. Hardware, Assembly & Checkout
NLC Review- Baseline Modulator

- Developed Detailed Cost Model
 - Based upon component research and vendor interactions
 - Modulator part of High Power RF Source
 - ~$200k per unit in Qty less than 10
NL:C Review- Baseline Modulator

- **Risk Assessment**
 - **Basic design - low risk**
 - **Previously built 550kV, 700A**
 - **Need to demonstrate 500kV with selected components**
 - **Polypropylene capacitors should have best reliability**
 - **Thyatron Lifetime Risk**
 - Present SLC thyatrons > 20k hours
 - NLC thyatron ~1/2 RMS current
 - longer life
NLC Review - Baseline Modulator

Risk Assessment (cont.)

- Parallel klystron operation - klystron protection (fault energy)
 - NLCTA- parallel klystrons in 1/99
 - Stray capacitance @ 500kV
 - Studying klystron arc pattern and arc energy
NLC Review- Baseline Modulator

FY’99 & FY’00 PLANS

- Build Prototype modulator
- Continue component R&D
 - Pulse Tran former
 - Configuration/core material
 - Thyra trons
 - evaluate 1st design thyratrons from vendors
 - PFN’s
 - low level tuning optimization
 - capacitor inductance vs. cost
 - Charging Supply
 - cost & reliability
NLC Review- Baseline Modulator

- Work with vendors
- Watch Alternate technologies

- Other Support
 - 500kV test stand for PPM klystron testing
 - NLCTA
 - station upgrades for two klystron operation
MODULATOR SUMMARY

X, S&L Load Comparison

<table>
<thead>
<tr>
<th>Modulator No.</th>
<th>Klystrons</th>
<th>Klystron Voltage kV</th>
<th>Peak Current A</th>
<th>Peak Current P.Widh uSec</th>
<th>PRF-Hz</th>
<th>Avg Pwr Out-kW</th>
<th>Est. Pwr In-kW *</th>
<th>Qty for 0.5 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Band</td>
<td>2 @75 MW</td>
<td>60</td>
<td>490</td>
<td>510</td>
<td>1.5</td>
<td>120</td>
<td>45</td>
<td>75</td>
</tr>
<tr>
<td>S Band</td>
<td>1 @ 65 MW</td>
<td>50</td>
<td>350</td>
<td>371</td>
<td>4.0</td>
<td>120</td>
<td>62</td>
<td>104</td>
</tr>
<tr>
<td>L Band</td>
<td>1 @ 75 MW</td>
<td>50</td>
<td>388</td>
<td>387</td>
<td>6.0</td>
<td>120</td>
<td>108</td>
<td>180,</td>
</tr>
</tbody>
</table>

*Assume 60% efficiency
NLC Review- Baseline Modulator

- S Band & L Band
 - Conventional Modulators
 - Build on X-Band baseline design
 - larger PFN’s (possible air)
 - Commonality of components
 - capacitors
 - thyra tron
 - controls