Baseline RF Distribution and Beamline Layout

- Tunnel Topology
- RF Distribution---Single-mode
 - RF Delay Line Distribution System (DLDS)
 - Vacuum Requirements
- Beamline Layout
 - Accelerator Structure Supports---strong back
 - Accelerators on Girders
NLC typical RF Station
X-Band 8 Klystrons

Note: M1 - M3 are monitor points for fundamental RF
M4 - M9 are monitor points for S-BPMs

75 mW

150 mW

300 mW

600 mW
Waveguide in the Tunnel

- 12.5 meter sections of WC475
 - class II or better copper
- Flanges or Eyelets
- Vacuum
 - 10^{-8} Torr
 - one 75 l/s pump every 25 meters
Section of Linac Beamline
Vacuum System Requirements

- One shift pump-down
 - $\sim 5 \times 10^{-5}$ torr in 4 hours

- RF Components
 - 10^{-8} torr

- Ganged power supplies for diagnostics
 - one per arm of the DLDS
 - one per girder
Accelerator Structure inside the space-frame strong-back
Three accelerator sections on a Girder
Baseline RF Distribution and Beamline Layout Summary

- Major RF components
 - Wrap around mode converters
 - H-plane combiners

- Accelerator alignment and processing
 - initial alignment in space-frame strong-back
 - bake-out as a single unit
 - three accelerator assemblies on a girder
 - pre-conditioned as a single unit