Integrating Detector Measurement

- Toroid
- BPM
- C1C2
- Undulator
- Alignment Tolerances
 - Reversible
- Soft Bend
- Last existing hard bend
- Existing Permanent Magnets
- Magnetized Fe Target ~10cm
 - Reversible
- C3
- C4
- Sweeping magnet
- Threshold Detectors
 - Gas Cherenkov
 - Aerogel
 - Quartz fiber

- Pre-radiator 1-2 mm Pb
 - Vary thickness

E- beam ~10^{10}
γ beam ~10^9
Fe target AP ~1%
Counting Detector Measurement

Energy measurement
Identify which is γ and e-

Alignment Tolerances
Reversible

Attenuator
Sweeping magnet

Soft Bend
Last existing hard bend

Undulator

Existing Permanent Magnets

Thin Magnetized Foil
~20 μm

Scintillators?

Detector Moller electron

Detector γ

Analysis Magnet?

E- beam ~10^{10}
γ beam ~10^9
γ beam after attenuator ~10^6
Compton scatters in Fe foil ~10^2
Coincidence Detector Acceptance ~1%

K. Moffeit, SLAC
12 August 2002
Polarization Measurement of Short Pulse Gamma-Rays Produced at KEK-ATF

M. Fukuda, T. Hirose, I. Sakai
Tokyo Metropolitan University
T. Aoki, M. Washio
Waseda University
T. Iimura
Seikei University
Y. Kurihara, T. Okugi, T. Omori, J. Urakawa
KEK

The method of γ-rays polarization measurement

Cross section of Compton scattering

\[A = \frac{N_+ - N_-}{N_+ + N_-} \]

\((\sim 1\%) \)

Transmission depends on the direction of the magnetic field

K. Moffeit, SLAC
12 August 2002