Vibration Stabilization R+D

Philip Burrows, Eric Doyle, Leif Eriksson, Peter Fitsos, Josef Frisch, Jeff Gronberg, Linda Hendrickson, Thomas Himel, Simon Jolly, Alexander Kalinine, Douglas McCormick, Thomas Markiewicz, Stephen Molloy Gavin Nesom, Richard Partridge, Colin Perry, Marc Ross, Steve Smith, Vladimir Vogle, Glen White,
Stabilization Projects

- Beam based feedback
 - Simulations (Not discussed here).
 - Nanometer BPM development

- Final Focus Vibration Feedback
 - Extended Object Tests – Algorithm development
 - Inertial sensor development
 - Interferometer (at UBC). (not covered here)

- Final Focus Intratrain Feedback - FONT
Nanometer Resolution Cavity BPM

- Use in NLC LINAC for beam diagnostics
 - Beam alignment / feedback in LINAC
 - May be able to measure bunch tilt
- Use with beam as an alignment tool
- Multi-Lab collaboration
 - Using BPMS developed at BINP
 - Tested on ATF extracted beamline at KEK
 - Electronics developed at SLAC
 - Precision mechanical mounts being developed at LLNL
BPMs Installed on Temporary X,Y, Theta-X, Theta-Y mounts at ATF
BPM Circuit Block Diagram

System mixes reference, and X or Y cavity signals down to a ~15MHz IF frequency. This signal is digitized, and fitted to extract I and Q components.
Fit to Typical Pulse

5 parameters fit:
DC offset
Decay Time
Amplitude
Frequency
Phase at T=0
Noise Result from Earlier Run

Error ~170nm (BIG)

Improvements:
- Better data analysis
- RF phase locks
- Better pre-amps
- Better beam stability?
LLNL Support Frame for BPMS

Uses Flexure mounts, driven by stepper motors

Provides 6 DOF control for each BPM

Rigid, high stability interconnection between BPMS

Expect installation at ATF in late 2003
Object Stabilization
Extended Object Stabilization

- Real final focus magnet doesn't look like a nearly cubical block!
- Will have internal degrees of freedom with resonant frequencies in the range of interest
- May have degenerate suspension frequencies
- We have constructed a mechanical mock-up of a final focus support system
 - Models magnet raft and support tube
Extended Object Status

• Mechanical construction complete
• Installing electrical connections to sensors and pushers
• Electronics and Software ready to begin commissioning
• Will initially test with commercial sensors, later convert to new low noise sensors.
Why Build Our Own Sensor?

• Block feedback limited by sensor noise
• Want $\sim 3 \times 10^{-9} \text{M/s}^2/\text{sqrt(Hz)}$ noise at $F > 0.1\text{Hz}$.
• Compact sensors for machinery vibration measurements (used for single block test) have noise $\sim 300X$ larger
• Geo Science seismometers have noise $< 10^{-9} \text{M/s}^2/\text{sqrt(Hz)}$, but are magnetically sensitive and physically large
• Could not find commercial sensors which met our requirements
Feedback Seismometers

- High suspension mechanical Q improves thermal noise - but results in large amplitude motion at resonance
- Below resonance sensitivity decreases as w^2 - leads to dynamic range problems
- Use feedback to keep suspended mass motionless relative to sensor housing. (Standard technique)
 - Can use feedback force as acceleration signal
 - Optionally use force and residual error as signal
Sensor Housing

Adjust motor

Cantilever

Suspension flexure spring (pre-bent to be flat under gravity load)

Electrostatic feedback pusher ~50V, 500um

Signal null at center

Cable delay 1 nanosecond

Signal combine

Mass

Signal split

I/Q

Signal null at center

DAC position feedback

Slow adjust flexure

DAC phase match feedback

ADC - get position and phase mismatch information

VCO ~20dBm
Sensor Parameters

- Suspended mass 40 grams
- Resonant frequency 1.46Hz
 - Next mode ~96Hz, ANSYS simulation
- Mechanical Q ~ 15-50 varies – not understood
- Theoretical Thermal Noise $2.5 \times 10^{-10} \text{M/s}^2/\text{sqrt(Hz)}$
 - 10X better than needed
- Theoretical electrical noise 2X smaller than mechanical thermal noise
Mechanical Design Issues

• BeCu spring (high tensile strength, non magnetic)
 – Pre-bent, operated at high stress to increase higher mode frequencies
 – Extensive creep measurements done at SLAC

• Thermal effects very large!!
 – $\sim 10^{-8} \text{C}^\circ$ corresponds to (0.1Hz) noise limit
 – Use multiple "thermal filters", Gold plating to reduce temperature variations. Operate in < 1 um vacuum.
 – Expected to be ultimate low frequency noise limit
Spring
Cantilever
Electrodes, Test Mass
RF IN
RF Out
Sensor Performance - Feedback Off

PRELIMINARY

Noise limit 100nm/sec^2/sqrt(Hz)

30X design

Feedback still off
Sensor Status - Feedback

- Feedback has been tested, but needs more actuator power (~X6) due to high level of 30Hz vibration in lab

- Will Increase drive voltage from 40V to 120V (needs new amplifier card).

- Use of feedback expected to improve sensor noise.
 - Operation at null RF power eliminates many noise sources – **but may not be limit!**
Sensor Status - Mechanical

- Sensor cantilever is Aluminum, and Mass is Tungsten. Forces from magnetic field gradients and variations will interfere with reading.
- Will replace cantilever with ceramic (better properties than Aluminum for this).
- Need material to replace mass:
 - Heavy Ceramic: HfO$_2$ (density=9.7)
 - Tungsten loaded epoxy (Will test soon)
Status - Data Acquisition

• DSP / VxWorks / Matlab system working!
 – 24 channels in and out, with programmable filters, gains.
 – Sensor feedback works (except actuator limit)
 – Single block feedback works (6 X 1d problem)

• For extended object “tilt sensitivity” may require full 8X8 DOF solution
 – Need to test speed of DSP
 – Faster DSP available, but $$
Sensor Status Overall

- Correlation with STS-2 suggest noise is ~30X design.
 - Still at least 10X better than old sensors
 - Hope feedback will improve noise
- Proceed with construction of 10 sensors for extended object feedback?
- Build a 2nd generation prototype?

Cost / Risk vs. Schedule trade off
Feedback on Nanosecond Timescales

• Similar to TESLA scheme, try to close a feedback loop within a single train.

• For NLC, short train train length: 270ns requires fast electronics

• Concept test at NLCTA using 170ns beam (bunched at X-band)
 – Needs stronger kicker
 – Do not have beam / beam amplification: 100um kicks CAN test 1nm system!
Tube Kicker Amp

“Resonant button”
BPM for X-band beam
FONT First Test Results

BPM, BPM electronics, Non-linear normalizer, Power amplifier, Kicker: all functional

Feedback with ~70ns delay
FONT upgrades for 2003

• Install 2 additional BPMs to monitor beam independent from feedback. (Done)
• New normalization electronics (base on Log amplifiers) being tested
• New solid state kicker amplifier (higher power, faster)
• Pulse to pulse feedforward to remove repeatable beam motion
• General electronics speed increase
Vibration Stabilization Overall

- Nanometer BPMs
 - Some parts tested, full system under construction
 - Need to demonstrate nanometer noise

- Inertial stabilization
 - Progress on sensors, extended object
 - Still need to demonstrate full stabilized system
 - Need to improve sensor noise

- FONT
 - Basic concept demonstrated, Upgrades underway

Nanometers are Small!