Cost Estimate and Schedule Development for the Linear Collider Project

Presented by T. L. Lavine
SLAC / NLC

MAC Review, June 25, 2003
Cost Estimating & Scheduling Activity

- Cost & Schedule Task Force effort, directed by the USLC Steering Group.

- Analyzing and comparing the cost and schedule of the Warm X-band and Cold L-band LC Options.

- Representative sites in California and Illinois
 - Warm LC: near Copper Mountain (CA) and DeKalb (IL)
 - Cold LC: near Logan Ridge (CA) and DeKalb (IL)

- Configurations defined by Accelerator Task Force
 - Warm and Cold Options, plus variants.
 - Equivalent luminosity, energy and upgradability.
 - Two Interaction Regions with crossing angle.
 - Electrons polarized, positrons polarizable by upgrade.
Cost & Schedule Task Force Members

D. Burke, J. Cornuelle, C. Corvin, T. Lavine, C. Lowe, T. Markiewicz, J. Sheppard (SLAC),
M. Harrison, B. Parker (BNL),
G. Dugan, H. Padamsee (Cornell),
D. Finley, P. Garbincius, S. Holmes, V. Kuchler (FNAL),
K. Robinson (LBNL),
W. Funk (TJNAF)
Cost Estimating Assumptions/Bases

- The LC will be built in the U.S. by DOE-contractor labs and universities using the services of global industry on a competitive basis.
- DOE financial practices will apply “Project Management for the Acquisition of Capital Assets,” DOE M 413.2-1, Approved 3/28/03, Mandatory on 10/1/03.
- As much scope as is reasonable will be contracted out.
- All civil construction will be U.S. content.
- Ignore the cost impact of any in-kind or politically directed contributions or purchases.
- Use base-year estimates without escalation.
- Cost-risk calculations will be Monte Carlo based.
Practical Matters

- Use previous cost analyses as much as possible.
- **Warm Option:** NLC 2002-2003, G(J)LC 2003.
- **Cold Option:**
 - Use Warm LC cost equivalents where they suffice.
 - Use TDR costs for cryomodules, RF, cryogenic facilities.
 - $1 per Euro.
 - Add 6% to TDR costs to approximate the “Buy American” penalty where appropriate.
 - Incorporate appropriate labor content across the board.
 - No mark-up to European labor, because salaries are commensurate with FTE productive hours.
WBS for Cost Analysis/Comparison
- Parallel at High Level -

1. WARM LC OPTION
 1.1 Warm LC Injector Complex
 1.2 Warm Main Linacs
 1.3 Warm LC Beam Delivery
 1.4 Control System
 1.5 Cryogenics Placeholder
 1.6 Site/Campus Facilities
 1.7 Technical Services
 1.8 Acc. Preops/Physics
 1.9 Management Services

2. COLD LC OPTION
 2.1 Cold LC Injector Complex
 2.2 Cold Main Linacs
 2.3 Cold LC Beam Delivery
 2.4 Control System
 2.5 Cryogenic Systems
 2.6 Site/Campus Facilities
 2.7 Technical Services
 2.8 Acc. Preops/Physics
 2.9 Management Services

Cross-cuts

Employee Labor versus Material/Services/Subcontracts.
R&D/EDI&A costs.
Conventional Facilities costs.
Probabilistic Cost Estimates

• Use probability distributions to communicate the cost estimates for major cost items.

• Allows for wide ranges of possible/probable costs.

• Reduces or eliminates lack-of-consensus problems.

• Combine the cost items using Monte Carlo method.

• Allows for consideration of systematic effects such as correlations between items.
Preferred Approach to Cost Risk
(Based on DOE M 413.3-1, Ch. 14)

- Risks are contingent cost items that measure inability to achieve overall project objectives within the defined scope, cost, schedule, technical, and external constraints.

- Risk Assessment approach being considered:
 - Identify each risk.
 - Estimate the probability of its occurrence.
 - Estimate the cost-range of its consequences, if it occurs.
 - Quantify its contingent cost range (by confidence level using Monte Carlo methods).

- Risk Management approach being considered:
 - Reduce or eliminate the probability or consequence of each risk where possible.
 - And/or include its contingent cost range in the total cost (by confidence level using Monte Carlo methods).
Cost Scrutiny and Triage

- There are 1450 cost items (as of Version 13).
- Validation or vetting of the costs is not feasible.
- Most items are being reviewed by someone other than the estimator.
- Relatively small costs are inconsequential.
- Warm and Cold costs are effectively set equal where possible.
- Established technologies are less critical.
- Probabilistic cost estimates and risk assessments can cover disagreements, wide ranges in point estimates, and systematic errors.
- Concentrate on the costly items such as the repetitive, modular linac systems.
Remaining Systematic Cost Issues

- Treatment of large extrapolations in quantities and manufacturing models.
- Uniform implementation of Learning Curves and Value Engineering.
- R&D, Design and Engineering estimates are under-reviewed.
- Analysis.
- Check dependence of cost on execution model and schedule.
Scheduling Objectives

• Validate the reasonableness of the Warm and Cold cost estimates and plans.

• Create a simple working model as an engaging framework for communicating the schedule and time-phasing the cost estimate.

• Understand the sequence and interrelationship of activities in the different areas of the LC project:
 - Accelerator Systems
 - Control System
 - Commissioning
 - Management Services
 - Conventional Facilities
 - Technical Services
 - Detectors
Scheduling Objectives

• It will be physically and financially impossible to do everything at once. Identify preferences for activity sequencing amenable to:
 - Practical funding and year-to-year funding growth,
 - Efficient resource use,
 - Acceptable completion schedule.

• Understand the schedule consequences of configuration choices.

• Eventually, formulate strategy for the scope and timing of subcontracts, procurements, and opportunities for risk reduction and cost sharing.
Summary of the Working Model Storyboard

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR Review</td>
<td>Site-indep. R&D/Design</td>
<td>Approve Baseline</td>
<td>Choose Intl Site</td>
<td>Start of Constr'n</td>
<td>Start of Installation</td>
<td>Start of Preops</td>
<td>Start of Facility Ops</td>
<td>Project Closeout</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R&D / Concept Development

- Engineering Design
- A-E Design

Civil Construction

Sustaining Engineering Support

Fabrication/Production

Installation and QC Checks

Electron Beam Commissioning

Positron Beam Commissioning

Machine Operations

T. L. Lavine
Observation: Early Injector Completion

- The injectors are complex systems requiring extensive commissioning and operational development before they can be used to commission the downstream systems.

- The electron injector can be the first system operational. It will drive learning for subsequent activities involving:
 - Underground design and construction,
 - Component fabrication/production,
 - Installation and integration,
 - Control System development,
 - System commissioning,
 - Operation and maintenance.
Observation: Main Linac Design Verification

• Shall we seek an early test of the Main Linac’s first 200 m (with housing, utilities, control system and other infrastructure in place at the ILC site)?

 Alternatively . . .

• Shall we build a 1-GeV Engineering Test Facility?
 - Construct at an existing Lab (2005-07) before the ILC host and site are chosen (2008).
 - Operate at first with prototypes during industrialization.
 - Operate later with production articles from inventory.
 - Develop ML installation and maintenance processes.
 - ‘Abandon’ it when ML commissioning starts at the ILC site.
Observation: Partial-Energy Start-Up of HEP

• It would delay project completion. Is there a compelling reason to plan for it?

• Partial-energy start-up would require:
 - Main Linac with partial complement of structures,
 - Beam Delivery to at least one Interaction Region,
 - Injector Systems fully capable.

• Energy for earliest start-up is a strategic choice:
 - How much of the Main Linac energy can be installed by the time the injectors can deliver beams and one I.R. can accept them?
 - Is it enough (2/3) to drive the undulator e+ source?
Observation: Staged Project Completion

- Significant systems may be made operational in stages for the purpose of HEP, Test Beams, and/or Machine Development years before the entire project is completed.

- Some of the resource budgets can migrate from the construction project to Facility Operations.
The Year Ahead

• The Task Force Reports to USLCSG by Sept. ‘03.
 - Cost Analysis of Warm and Cold LC Options.
 - Schedule/Story Development.
 - Time-phased cost analysis.

 - Flexible analysis of trade-offs and opportunities, distinguishing between impact levels of 1%, 5%, 10%.
 - Long-range Budget Planning.
Schedule for task force work

- Jan. 10: Charge to Accelerator Subcommittee from USLCSG Executive Subcommittee
- April 14: Joint task force meeting #1
- April 16, June 11: Status reports to USLCSG ExecComm
- May 22-23 Cost review meeting at DESY
- June 5-6 Design review meeting at DESY
- June 15-16: Joint task force meeting #2
- July 13: report on work at Cornell ALCW meeting
- Late August: Final joint task force meeting
- September: Completion of task force work and submission of report to the USLCSG Executive Committee; presentation to observers from DESY, CERN, KEK