There are different ways to add Fixed Target Options to a Linear Collider with minimal or reduced impact on Colliding Physics Running.

The specific ways proposed seem to have much to do with the physics background of the proponents. That is to say, the sociology of potential Fixed Target proponents has to be paid attention to.
Genealogy of Lepton Fixed Target Physics: SLAC

SLAC (past and present): 6 × 10^{13}/\text{sec}
of polarized e^- (85%)
Dedicated, high luminosity

Polarized Targets:
3He, NH_3, ND_3, ^6LiD

Topics: spin content of the Nucleon

Experiments:
E-142, E-143
E-154, E-155
E-155X
(transverse)

Unpolarized Target: ^1H

Topic: Weinberg Angle off the Z

E-158
5 × 10^{11} e on 1.5 m
of H_2 Target to
$\mathcal{L} \approx 5 \times 10^{38} \text{cm}^2 \text{sec}^{-1}$

SLAC (future = Real Photon Collaborations):
produce polarized $10^9 \gamma$'s/second from
4 × 10^{12} polarized e/second
Dedicated, high luminosity

Polarized and Unpolarized Targets

Experiments:
E-159 GDH Sum Rule NH_3, ND_3
$\Delta \sigma^{\gamma/N}(k)$
E-160 ψ Photoproduction various A
E-161 Gluon Spin ΔG ^6LiD
E-154/E-155/E-155X

E-154 3He Target and Spectrometers

E-155 NH$_3$, ND$_3$, 6LiD 5 Tesla
Superconducting Microwave Target

Rainer Pitthan
CERN: 5×10^7 of polarized μ per SPS cycle (10+ sec) (80% polarization from decay of π)

Dedicated Low luminosity

Polarized Targets

NH_3 (80%) ND_3 (50%)

Topic: Spin content of the Nucleon (spin crisis)

Experiment: SMC (Spin Muon Collaboration)
DESY: from HERA 10^{17}/s
polarized electrons/positrons
Low luminosity, parasitic operation
quasi-CW beam (100% duty cycle)
Polarized Gas Targets \(^1\)H, \(^2\)D, \(^3\)He
Density: \(\approx 10^{14}\) atoms/cm\(^2\)

Topic: spin content of the Nucleon
Beam Polarization \(<p> = 55\%\)
Target Polarization
\(<^3\text{He} p> = 46\%\)
\(<^1\text{He} p> = 88\%\)

Luminosity: with 20 mA \(\Rightarrow \mathcal{L} \approx 10^{31}\) cm\(^2\) s\(^{-1}\)
The Q^2-dependence of the Generalised Gerasimov-Drell-Hearn Integral for the Proton

August 17, 2000

HERMES Collaboration

A. Airapetian ac, N. Akopov ae, I. Akushevich bf, M. Amarian w,xf,y, J. Arrington b
E.C. Aschenauer g,m, H. Avakian bf, R. Avakian ae, A. Avetisian ac, E. Avetisian ae, P. Bailey o, B. Baines o, C. Baumgarten d, V. Bełaszkowski c, S. Benreuther d, N. Bianchi k, H. Böttcher f, A. Borisesov f,m, M. Bouwhuis o, J. Brack e, S. Branksiep i, B. Braun i, W. Brückner b, A. Brüll b, P. Buda i, H.J. Bulten q,u, G.P. Capitani f, P. Carted d, P. Chumney e, E. Cisbani i, G.R. Court f, P.F. Dalpiaz j, R. De Leo c, L. De Nardo d, E. De Sanctis k, D. De Schepper b,c, E. Devisan i, P.K.A. de Witt Huberta w, P. Di Nezza k, V. Djordjadse f, M. Düren i, A. Dvoredsky d, G. Elbakian ae, J. Ely c, A. Fantoni i, A. Fechtchenko b, M. Ferro-Luzzi w,u, K. Fieder l, B.W. Filippe d, H. Fischer c, B. Fox c, J. Franz i, S. Frullani f, Y. Gärber d, F. Garibaldi e, E. Garutti e, G. Garrivoll v, Y. Ghribiyeh ae, A. Golendukhin x,ae, G. Graw u, O. Grebeniok x, P.W. Green a,ab, I.G. Greinhaus a,ab, A. Gute c, W. Haeberli q, M. Hartig u, D. Hasch g,k, D. Heesen w, F.H. Heinsoo l, M. Henoch l, R. Hertenberger y, W.H.A. Hesseink w,u, P. Hoffmann-Röthe w, G. Hofmann e, Y. Holler f, R.J. Holt o, B. Hommez m, G. Iarygin h, M. Iiodice e, A. Izotov o, H.E. Jackson b, A. Jgoux x, P. Jung u, R. Kaiser g,aa,ab, J. Kanáska ac, E. Kinsey e, A. Kiselev x, P. Kitching b, H. Kobayashi ac, N. Koch c, K. Königsmann e, K. Kolster u,w, V. Korotkov s, E. Kotik h, V. Kozlov s, V.G. Krivokhijine h, G. Kyle y, L. Lagumardie c, A. Laziev w,ad, P. Lenaerts i, T. Lindemann f, W. Lorenzon a, N.C.R. Makino b,o, J.W. Martin f, H. Maruyama ae, F. Macco j, M. McAndrew p, K. McLambert d,r, R.D. McKee d,r, F. Menden ab, A. Metz u, N. Meyners o, O. Miklouko x, C.A. Miller a,ab, R. Milner v, V. Mitina h, V. Muciuco f, R. Musso c, A. Nagaitsev h, E. Nappi c, Y. Narshkina x, A. Nasu c, K. Negodaeva w, W.-D. Nowak s, T.G. O'Neill b, R. Ospeshnov ab, J. Ouyang u, B.R. Owen o, S.P. Pate tv, S. Potashkov d, D.H. Potterf b, G. Rachen b, V. Rapport s, R. Redwine i, D. Reggiani j, A.R. Reolon k, R. Ristinen k, K. Rith d, D. Robinson o, M. Ruh d, Y. Ryabchikov m, U. Sakemi ac, I. Savin h,c, C. Scarlett b, A. Schäfer c, C. Schill f, F. Schmidt k, G. Schindl v, K.P. Schiler f, A. Schwind s, J. Seibert f, B. Seitz s, T.-A. Shibata ac, T. Shin a, V. Sloutov b, C. Simian j,wd, A. Simon i, K. Sinani a, E. Steljes f, J.M. Steiger w, J. Stewart ab, U. Stosiek s, K. Suess ae, M. Sutter h, T. Tallini p, S. Tanovic ae, A. Terekolov k, S. Tessarini j, E. Thomas b, B. Tipton dr, M. Tytgat j,ms, G.M. Urciuoli j, J.F.J. van den Brand w,u, G. van der Steenhoven w, R. van de Vyver r, J.J. van Hunen w, M.C. Vetterli aa,ab, V. Vikhrov x, M.G. Vincter a,ab, J. Visser w, E. Volk h, C. Weiskopf j, J. Wendland aa,ab, J. Wilbert b, T. Wise q, S. Yem ab, S. Yoneyama ac, H. Zohrabian ae

aDepartment of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
bPhysics Division, Argonne National Laboratory, Argonne, Illinois 60439-4833, USA
cIstituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy
dW.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA
eNuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0446, USA
fDESY, Deutsches Elektronen-Synchrotron, 22603 Hamburg, Germany
gDESY Zeuthen, 15738 Zeuthen, Germany
hJoint Institute for Nuclear Research, 141980 Dubna, Russia
iPhysikalisches Institut, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
jIstituto Nazionale di Fisica Nucleare, Sezione di Ferrara e Dipartimento di Fisica, Università di Ferrara, 44100 Ferrara, Italy
kIstituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
lFakultät für Physik, Universität Potsdam, 14476 Potsdam, Germany
maDepartment of Subatomic and Radiation Physics, University of Gent, 9000 Gent, Belgium
mbMax-Planck-Institut für Kernphysik, 69029 Heidelberg, Germany
mcDepartment of Physics, University of Illinois, Urbana, Illinois 61801, USA
pPhysics Department, University of Michigan, Ann Arbor, Michigan 48109-1120, USA
qIhnedez Physical Institute, 117924 Moscow, Russia
raSektion Physik, Universität München, 85748 Garching, Germany
sDepartment of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA
tNational Institute for High Energy Physics (NIKHEF), 1009 DB Amsterdam, The Netherlands
taPetersburg Nuclear Physics Institute, St. Petersbourg, Gatchina, 188350 Russia
uIstituto per la Teoristica Fisica, Università Regensburg, 93040 Regensburg, Germany
tvIstituto Nazionale di Fisica Nucleare, Sezione Sanità and Physics Laboratory, Istituto Superiore di Sanità, 00161 Roma, Italy
taaDepartment of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
tabTRIUMF, Vancouver, British Columbia V6T 2A3, Canada
tcDepartment of Physics, Tokyo Institute of Technology, Tokyo 152, Japan
tdDepartment of Physics and Astronomy, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
teYerevan Physics Institute, 375036, Yerevan, Armenia

Abstract

The dependence on Q^2 (the negative square of the 4-momentum of the exchanged virtual photon) of the Generalised Gerasimov-Drell-Hearn integral for the proton has been measured in the range 1.2 GeV$^2 < Q^2 < 12$ GeV2 by scattering longitudinally polarised positrons on a longitudinally polarised hydrogen gas target. The contributions of the nuclear-resonance and deep-inelastic regions to this integral have been evaluated separately. The latter has been found to dominate for $Q^2 > 3$ GeV2, while both contributions are important at low Q^2. The total integral shows no significant deviation from a $1/Q^2$ behaviour in the measured Q^2 range, and thus no sign of large effects due to nuclear-resonance excitations or non-leading twist.
L and E_{CM} for Typical Experiments at Polarized Lepton Facilities $> 5\text{GeV}$

<table>
<thead>
<tr>
<th>Facility/Experiment</th>
<th>$E_{\text{CM}} [\text{ GeV}]$</th>
<th>$L [\text{ cm}^2 \text{ sec}^{-1}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAC</td>
<td>5-10</td>
<td>$<5 \times 10^{38}$</td>
</tr>
<tr>
<td>HERMES</td>
<td>7</td>
<td>2×10^{31}</td>
</tr>
<tr>
<td>COMPASS</td>
<td>20</td>
<td>5×10^{32}</td>
</tr>
<tr>
<td>ELFE@CERN</td>
<td>7</td>
<td>5×10^{35}</td>
</tr>
<tr>
<td>TESLA\n</td>
<td>22</td>
<td>8×10^{34}</td>
</tr>
<tr>
<td>NLCN</td>
<td>22 – 31</td>
<td>$<5 \times 10^{38}$</td>
</tr>
</tbody>
</table>
Recall: Schematic of Proposed NLC Fixed Target...
... with Disrupted beams, to do one SLAC Style Experiment...
Energy Collimation Possible but needs design effort.

Long energy tails of particles.

At 250 GeV per beam for $\Delta E/E = 1\%$ 1.6 MW have to be collimated.

At higher energy, the beams at collision get smaller, and the beamstrahlung and coherent pair production effects get even more severe.

Disruptive Beam 500 GeV cms

% of Particles, in 1% Bins

Power in MW, in 1% Bins [%]

Energy [GeV]

need to collimate 1.6 MWatt
Yuri Nosochkov's First Design...

Design has three separate beam dumps (red lines in plot) at progressively higher dispersion. The first dump is the conventional dump needed in any case.

Each beam dump has a through pipe which collimates the fixed target beam in energy.

The final energy definition is \(\pm 0.5\% \) (HWHM).
...with Progressively Staged Dumps...
Refinements leading to an engineering design being worked on. In particular, orbit changes due to synchrotron radiation losses have not been taken into account yet.
The beam is progressively more collimated.

Efficiency of collimation (width of through pipe and dispersion) has to be weighed against the impact on the entrance material to the collimator.

<table>
<thead>
<tr>
<th>Stage</th>
<th>D/mm</th>
<th>kW/%</th>
<th>kW/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>400</td>
<td>20</td>
</tr>
</tbody>
</table>

Seems to be within the range of past dumps.
But There are Other Styles of Physics

• The Møller Experiment is the extreme case of needing large charges on a non-polarized target. It is an incentive to look for ways to use the disrupted beams.

• But there is other physics, driven by polarized target technology and/or coincidence background to lower currents.

• Then there is the whole world of gluon physics with real photons. Underway at SLAC with 50 GeV are E-159, E-160, and E-161 (look at http://www.slac.stanford.edu/detailed.html). Producing real photons with back scattered lasers requires a pristine quality beam. Coherent Bremsstrahlung production by scattering of diamond crystal planes is a possibility.

• Looking for other alternative ways might be well worth. One alternative, brilliant idea, has been used to develop TESLA-N (arXiv:hep-ph/0011299).
Example TESLA: Using the Positron Arm...
HERMES has specialized in precision measurements of spin structure functions, extending SLAC's work to understand the spin structure of QCD.

TESLA-N is focusing on the measurements of transversity distributions, important to understand missing chirally odd operators, which can only be measured with transversely polarized targets. Hence the importance of SLAC E-155X, http://www.slac.stanford.edu/exp/e155/e155extension/e155x.html, the only dedicated experiment with a transversely polarized target.
What are the Advantages of using the e+ Arm?

Concurrent Operation and Duty Cycle!

- One advantage is the ease of interleaving Collider Bunches with Fixed Target Bunches. The "opposite charge option" allows separation between the main beam and eN-experiment beams by a simple splitter magnet.
Filling the Empty Buckets

- Another advantage by filling the empty 440 buckets between the 2830 e+e- bunches with a very low charge (~2 \(10^4\) e are proposed), a 0.5 % duty cycle beam for coincidence experiments is being created. This increases the beam loading by only 0.04%.

- The physics proposed is an extension of the HERMES physics, and therefore is geared toward needing a good duty cycle.
What About an NLC-N?

- In principle one could use the positron side also with NLC: there are 15 empty buckets between the colliding physics buckets.

- This could enable the production of γ-beams with back scattered lasers, or with coherent beamstrahlung production.

- Let's assume 1% relative beam loading is acceptable (or lowering the colliding physics charge by 1% is acceptable), then the empty buckets will carry $<1\,\text{pCoul}$ each, making for a very high quality beam, with a charge of up to $10^{11}\,\text{e}^{-}\text{sec}^{-1}$. This will be enough for most experiments, in particular production and scattering of real photons* (http://www.slac.stanford.edu/exp/e159/photonbeam/index.html).

- Details of possible wake field problems in the first few buckets produced by the high charge e^+ bucket need to be evaluated.

*remember, the figure of merit for γ-scattering goes up with energy
from back scattered lasers
(D. Asner)

\[E_{\gamma}(\text{GeV}) \]

\[\text{Electron, velocity}=b. \]
Lag by one photon wavelength over distance \(a/\lambda\)

Coherent Bremsstrahlung Production from crystal (diamond) scattering with \(4 \times 10^{10}\) electrons incident, from a 0.0004 radiation length diamond

Calculations by P. Bosted
Conclusions

• There are still ideas out there we have not thought of.

• Using the NLC disrupted beams for Fixed Target experiments has the advantage of having high currents completely parasitically. The price to pay is the cost of the system of clumps, the emittance and energy spread of the beam. While this is not essential for many fixed target experiments, it (probably) precludes to produce γ's with Laser Compton Scattering.

• Using an Opposite Charge Scheme has the advantage of producing low emittance quality beams with low energy spread, which could be used to produce backscattered polarized γ's. Going this route will have a moderate impact (1%) on the total e^+ charge being accelerated for colliding beams.

• Maybe we can come up with an even better idea how to increase at moderate cost the total physics potential of the 250 – 500 GeV Linear Electron/Positron Accelerator we want to build.