Probing Gluon Polarization through Inclusive Deep Inelastic Scattering

Yury Kolomensky
UC Berkeley

July 3, 2001
Snowmass, CO

- Present polarized DIS data
- From structure functions to ΔG
- Reach of fixed target program at a Future Linear Collider
Nucleon Spin Structure

\[S_p = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \langle L_z \rangle \]
A Bit of History

- First experiments: E80 and E130 at SLAC in early 1980s
 - Very active field in both theory and experiment
 - Deep-Inelastic Scattering experiments at SLAC, CERN, and DESY
 ⇒ Inclusive DIS measurements at existing facilities have reached their potential

→ Very precise measurements of longitudinal spin structure functions $g_{1}^{p,n,d}$ for Bjorken
 $x > 0.01$, $Q^{2} < 20$ GeV2
 - SLAC E142, E143, E154, E155, DESY HERMES

→ SMC experiment measured $g_{1}^{p,d}$ to $x \approx 0.003$ and $Q^{2} \approx 100$ GeV2
 - Precision at low x is not sufficient for extracting ΔG

⇒ Qualitative understanding of “spin crisis” established
 - Great success of pQCD
 - $\Delta \Sigma \sim 0.2...0.3$, $\Delta G \sim 1$ – with large uncertainty
“Known” Future Projects

- New emphasis on measuring ΔG and semi-inclusive methods
 - Parton distributions from HERMES: semi-inclusive results, open charm
 - RHIC-SPIN: Sea-quarks, gluons at moderate x
 - HERA-\vec{p} or eRHIC (EIC?): structure function evolution

⇒ I will try to argue a case for coming back to high-precision inclusive DIS in a new kinematic regime
Polarized Deep Inelastic Lepton-Nucleon Scattering

Measure Asymmetries:

\[A_{\parallel}(x, Q^2) = \frac{d\sigma^{\uparrow\downarrow} - d\sigma^{\uparrow\uparrow}}{d\sigma^{\uparrow\downarrow} + d\sigma^{\uparrow\uparrow}}, \quad A_{\perp}(x, Q^2) = \frac{d\sigma^{\uparrow\rightarrow} - d\sigma^{\downarrow\rightarrow}}{d\sigma^{\uparrow\rightarrow} + d\sigma^{\downarrow\rightarrow}}. \]

Nucleon Spin Structure Functions:

\[g_1(x, Q^2) \sim A_{\parallel}(x, Q^2) \cdot F_1(x, Q^2), \]
\[g_2(x, Q^2) \sim A_{\perp}(x, Q^2) \cdot F_1(x, Q^2). \]
“Naive” Quark-Parton Model

- \(x \) – fraction of nucleon momentum carried by the struck parton
- \(Q^2 \) – 4-momentum transfer
 - \(\Delta q(x, Q^2) = (q^\uparrow + \bar{q}^\uparrow) - (q^\downarrow + \bar{q}^\downarrow) \)
 - \(q(x, Q^2) = (q^\uparrow + \bar{q}^\uparrow) + (q^\downarrow + \bar{q}^\downarrow) \)
- Partonic interpretation of structure functions

\[
g_1^p(x, Q^2) = \frac{1}{2} \left[\frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s \right]
\]
\[
F_1^p(x, Q^2) = \frac{1}{2} \left[\frac{4}{9} \ u + \frac{1}{9} \ d + \frac{1}{9} \ s \right]
\]
Axial Current

\[\langle p | A^q_{\mu} | p \rangle = \langle p | \bar{q} \gamma_{\mu} \gamma_5 q | p \rangle \]
\[= \langle p | \bar{q}_R \gamma_{\mu} q_R - \bar{q}_L \gamma_{\mu} q_L | p \rangle \]
\[= \Delta q S_\mu = \int_0^1 dx \Delta q(x) S_\mu \]

- Neutron β-decay: measure $\Delta q_3 = g_A = \Delta u - \Delta d$
- Hyperon β-decay: measure $\Delta q_8 = \Delta u + \Delta d - 2\Delta s$
- Spin structure functions:

\[\Gamma^p_1 \equiv \int_0^1 g^p_1(x) dx = \frac{1}{2} \left[\frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s \right] \]

\[\Rightarrow \text{Extract } \Delta \Sigma = \Delta u + \Delta d + \Delta s - \text{quark spin contribution.} \]
Bjorken Sum Rule

Based on isospin symmetry

\[\int_0^1 dx (g_1^p(x) - g_1^n(x)) = \frac{1}{6} [\Delta u - \Delta d] = \frac{1}{6} g_A, \quad Q^2 \to \infty \]

J. D. Bjorken (1966)

Fundamental prediction of QCD

Corrections known to \(\alpha_s^3 \), decrease with \(Q^2 \)

Low \(x \) behavior is very important

Ellis-Jaffe Sum Rule

Assuming \(\Delta s = 0 \), determine \(\Gamma_1^{p,n,d} \) from the \(\beta \)-decay data:

\[\Gamma_1^p = 0.185, \quad \Gamma_1^n = -0.024, \quad Q^2 \to \infty \]

J. Ellis and R. Jaffe (1974)
Experiments

- Pioneer experiments of 1980’s
 - SLAC E80, E130, CERN EMC

- Second-generation experiments
 - Electron scattering experiments at SLAC: E142/3, E154/5
 - Moderate kinematic coverage, high counting rate, good control of systematic effects
 - Muon scattering: SMC at CERN
 - Wide kinematic coverage, moderate statistics
 - HERMES: “the only game in town” (right now :-)
 - Novel target technologies (gas-jet)
 - Good duty factor: ideal for coincidence measurements
Kinematics
Q^2 dependence: proton

December 1998

g_1^p / F_1^p vs. Q^2 [(GeV/c)2]

- E155
- E143
- SMC
- HERMES
- EMC

Preliminary

Nucleon Spin Structure a Future LC
Q^2 dependence: deuteron
Perturbative QCD analysis

- The data has approached the quality of unpolarized experiments – *circa* late 1980’s.
 - Sufficiently broad kinematic range
 - Precision
- Consistent treatment of data
 - Q^2 dependence of asymmetries
 - Low x fit
- Tools exist: NLO pQCD analysis
 - Spin-dependent NLO anomalous dimensions
 - A number of analyses completed (1996-98)
Global NLO fit

- **Start with parton distributions at low** $Q^2 \approx 0.3$ GeV2.

 → Need theoretical input or high-x data. Example:

 $$\Delta f(x, Q_0^2) = A_f x^{\alpha_f} f(x, Q_0^2)$$

 * $f \equiv$ valence Δu_V and Δd_V, sea, gluons
 * $f(x, Q_0^2)$ is from unpolarized measurements.

- **Evolve up to experimental** $Q^2 \geq 1$ GeV2 using NLO DGLAP equations

- Constrain free parameters
Factorization at NLO

- **Factorization scheme**
 - In NLO
 \[g_1(x, Q^2) = \frac{1}{2} \sum_q e_q^2 \left[C_q \otimes \Delta q + C_G \otimes \Delta G \right] \]
 - \(C_{q,G} \) – perturbative coefficients;
 - \(\Delta q \) – non-perturbative input.
 - Definition depends on renormalization procedure

- **Common schemes**
 - \(\overline{\text{MS}} \) – gluons do not contribute to the integral of \(g_1 \)
 - Adler-Bardeen – include axial anomaly contribution
 \[\int_0^1 g_1^p(x) dx = \frac{1}{2} \left[\frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s \right] - \frac{\alpha_S(Q^2)}{6\pi} \Delta G \]

⇒ Perform fits in both schemes to check stability
Factorization at NLO (cont.)

- Consequence: ambiguity in definition of “quark spin” contribution:

\[\Delta \Sigma(AB) = \Delta \Sigma(\overline{\text{MS}}) + \frac{N_f}{2\pi} \alpha_s \Delta G \]

- \(\alpha_s(Q^2) \Delta G'(Q^2) \) is independent of \(Q^2 \) to \(O(\alpha_s^2) \)

J. Kodaira (1980)

\(\Rightarrow \) \(\Delta \Sigma \) is defined up to a constant

\(\Rightarrow \) Asymptotically \(\Delta G \sim 1/\alpha_s \rightarrow \infty \)

- Angular momentum sum rule revised:

X. Ji (1996)

\[\frac{1}{2} = \left(\frac{1}{2} \Delta \Sigma + \langle L^q_z \rangle \right) + \left(\Delta G + \langle L^G_z \rangle \right) \]

\[= J_q(\sim 1/4) + J_G(\sim 1/4) \quad (Q^2 \rightarrow \infty) \]
Proton Structure Function

[Graph showing data points and curves representing the proton structure function]
Sea and Gluon Distributions
Summary of current NLO results

- Valence distributions well constrained, sea and gluons – with large uncertainty
- Low x behavior of the non-singlet distributions is well understood
 * “Regge-like” at low Q^2
 * Divergent at $Q^2 > 1 \text{ GeV}^2$ due to evolution
 * Powers are constrained well
- Bjorken sum rule confirmed, EJ rule violated
- $\Delta \Sigma \sim 0.2; \quad \Delta G \sim 2 \pm 1$
 \Rightarrow Limited by Q^2 lever arm and precision at low x
- Future Linear Collider potential
 * Wider kinematic coverage, higher precision
 \Rightarrow “SMC kinematics with E154/5 statistics”
Kinematics
Measuring $g_1^{p,n,d}(x, Q^2)$ at the NLC

- **Assumptions:**
 - 250 GeV
 - e^- beam polarization 80%
 - Target polarization: 80% (p), 40% (n), 30% (d)
 - Dilution: 0.1…0.3 depending on target
 - Intensity: $10^{13}…10^{14}$ e/sec

- **Possible at NLC or TESLA**
 - Although current TESLA-N proposal focuses on low-luminosity physics
Spin Structure at the NLC (cont.)

- Complimentary to HERA-\bar{p} or EIC
 - Comparable statistics achievable to $x \sim 0.002$
 - Potentially better systematics (helicity flips, nucleon polarization)
- Flavor separation through measurements of p, n, d structure functions
 - Crucial for pQCD fits
 - Not readily available for HERA
 \Rightarrow Goal: $\sigma(\Delta G) \sim 0.1$ in Snowmass year
Projected uncertainties
Experimental Considerations: Statistics

- Cross section smaller compared to E154/5 by a factor of ≈ 16
 - As much luminosity as target can handle
 - Improve 3He targets (cf. JLAB experiments using longer targets). High polarization, low dilution a key.
 - Depolarization an issue for NH$_3$ cryogenic target
 - Conceivable to gain a factor of 2–4.
 - Run longer (\sim Snowmass year per experiment)
 - Parasitic to collider program
 - Another factor of 4
 - Increase spectrometer acceptance
 - Gain a factor of 2 to be safe
Spectrometer/Detector Issues

- Maximize detector acceptance to increase counting rate
 - “Open geometry” not suitable for high-rate electron environment.
 - Double- or triple-arm spectrometers (scaled E154/5) may work, will need fine tuning
 - Quadrupoles or superconducting magnets? Beware of synchrotron radiation

- Backgrounds
 - Photons: “two-bounce” system
 - Synchrotron radiation in spectrometer magnets
 - Need some thought, avoid high gradients
 - Low-mass tracking system, multiple layers
 - Hadrons
 - “Low-energy” pions are at 50-100 GeV
 - Sounds like a TRD is needed

- Do not see show-stoppers, but detailed studies needed
Constraints on Beam Quality and the IR

- **Fixed target experiments have always been least-demanding :-)**
 - Moderate energy spread OK (1..2% full width)
 - Beam size not an issue (∼ 1 mm OK – in fact, some targets need larger spots or “rastering”)
 - Moderate requirements on jitter for these types of experiments

- **Beamline**
 - Would like to (be able to) run parasitic
 - Need access to apparatus while collider is running
 - Control synchrotron radiation
 - Need to keep longitudinal polarization
 - See also Beam Delivery/IR Working group
Detector Hall/End Station

- Low-angle scattering
 - $O(1^\circ)$ scattering angles (set by requiring $Q^2 = 1$ GeV for $y \approx 0.8$

- Long (and skinny) detector hall
 - Simple energy scaling: $O(400 \text{ m})$

- Prefer separate extraction line to exhaust beam
 - Radiation and background issues
 - Access to apparatus

- Several options discussed; need to voice our opinion!
Conclusion

- Third generation polarized DIS experiments would provide significant information on ΔG
 - Evolution of structure functions probes ΔG to lowest x
 - Expect $\sigma(\Delta G) \approx 0.1$
 - Complimentary to other methods of measuring ΔG

- Broadens LC’s horizon and community

⇒ Sound investment!