To: D. Burke
From: J. C. Sheppard
Subject: NLC CDR-0.4: Injector Description

Attached is a collection of sheets which together represent the proto-description of the NLC Injector Systems, CRD-0.4. These sheets include: a Change Summary; Update of the PAC'99 paper; e- layout + table of e- system tunnel lengths; e+ layout + table of e+ system tunnel lengths; table of RF Counts by Area; and table of Magnet Count. I expect to modify entries and formats and to augment this information. I think a short description of each injector machine (to be written) along the lines of J. Ives conventional facilities 3 page description can serve as the high level summary and entry to the world of injectors.

We'll be updating this over the next week and shall have some work for Nixx next Monday. I expect to be most the way done with two iterations (on March 13th and March 20th).
CDR-0.4, Revised Baseline

Change Summary

6-GeV Prelinacs

C-Band replacement of S-Band in the 6-GeV prelinacs and drive linac

104 m diameter turn-around, no sextupoles

600 MeV BC2 linacs, X-Band

Permanent Magnets, everywhere

Creative Tunnel layouts

Detailed Cost Studies in DR Areas

Sources, Damping Ring still well described by the May, 1999 CD-1 Model

Cost Validation to Drive Changes

CDR-0.4 Configuration March 2, 2000
UPDATE TO THE NLC INJECTOR SYSTEM: CDR-0.4"


Abstract

The Next Linear Collider (NLC) Injector System is designed to produce low emittance, 8 GeV electron and positron beams at 120 hertz for injection into the NLC main linacs. Each beam consists of a train of 95 bunches spaced by 2.8 ns; each bunch has a population of $1.0 \times 10^{10}$ particles. At injection into the main linacs, the horizontal and vertical emittances are specified to be $\gamma_x = 3 \times 10^{-6}$ m-rad and $\gamma_y = 3 \times 10^{-6}$ m-rad and the bunch length is 100 pm. Electron polarization of greater than 80% is required. Electron and positron beams are generated in separate accelerator complexes each of which contain the source, damping ring systems, L-band S-band C-band, and X-band linacs, bunch length compressors, and collimation regions. The need for low technical risk, reliable injector subsystems is a major consideration in the design effort. This paper presents an overview of the NLC injector systems.

1 INTRODUCTION

In the NLC[1] Injector System, the electron and positron beams are generated in separate accelerator complexes located at the entrances to the two main linacs, separated by about 32 km. Each injector complex consists of a source system, a damping ring complex, and a prelinac and bunch length compression system. A schematic layout of the positron injector systems is shown in Figure 1. In the electron injector (not shown), redundant electron sources feed the e- Booster which is coupled directly to the e-Damping Ring (there is no e- Predamping Ring). Table 1 lists the beam parameters at injection to the main linacs.

Table 1: NLC Injector System Beam Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>8 GeV</td>
</tr>
<tr>
<td>Energy Spread</td>
<td>$\Delta E/E$</td>
</tr>
<tr>
<td>Single Bunch $\sigma_B$</td>
<td>1.5%</td>
</tr>
<tr>
<td>Horizontal Emittance</td>
<td>$\gamma_x$</td>
</tr>
<tr>
<td>Vertical Emittance</td>
<td>$\gamma_y$</td>
</tr>
<tr>
<td>Bunch Length</td>
<td>$\sigma_z$</td>
</tr>
<tr>
<td>Electron Polarization</td>
<td>$P_e$</td>
</tr>
<tr>
<td>Positron Polarization</td>
<td>$P_P$</td>
</tr>
<tr>
<td>Particles/Bunch</td>
<td>$N_B$</td>
</tr>
<tr>
<td>Number of Bunches</td>
<td>$95$ bunches</td>
</tr>
<tr>
<td>Bunch Spacing</td>
<td>$2.8$ ns</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>$120$ Hz</td>
</tr>
</tbody>
</table>

*Work supported by the U.S. Department of Energy under Contract Nos. DE-AC03-76SF00515, SLAC and W-7405-ENG-48, LLNL.

*Email: jcs@slac.stanford.edu

In the electron injector, polarized electrons are produced using a III-V semiconductor photocathode, accelerated to 1.98 GeV in an S-band linac and injected into a damping ring. Upon extraction from the damping ring, the bunch length is compressed and the beams are accelerated to 8 GeV in a C-band linac. Initial transverse collimation is done prior to transport through a 180° turn-around.
Second stage bunch length compression is accomplished using a 600 MeV X-band linac followed by a dipole chicane. Au optical matching section and diagnostic region follow the compressor chicane. Tune-up dumps permit full beam preparation prior to injection into the 180° turn-around and into the main linac.

On the positron side, electrons are produced using a thermionic cathode and accelerated to an energy of 6.22 GeV in a C-band linac before impacting a target to produce positrons. Initial capture and acceleration of positrons to the damping ring energy of 1.98 GeV is done in an L-band linac system. Redundant e- and e+ sources are incorporated into the design to enhance availability. The large positron emittances are initially damped in a predamping ring prior to injection into the damping ring. The positron damping ring and subsequent accelerator systems are identical to those on the electron side with the notable exception that polarization spin manipulation solenoids and polarimeter are omitted. The positron beamlines allow for installation of spin preserving solenoids should the NLC be configured for electron-electron collisions.

The NLC emittance budget allows for dilution of the beam emittances by 20% in the horizontal and 50% in the vertical between extraction from the damping rings and injection into the main linacs. This budget is used to calculate tolerances. The values of $\gamma_{x_e} = 3 \times 10^{-6}$ m-rad and $\gamma_{y_e} = 3 \times 10^{-8}$ m-rad are the undiluted design emittances at extraction from the damping rings.

### 2 ELECTRON PRODUCTION

Polarized electrons are produced using a conventional dc gun and III-V semiconductor photocathode. Electron polarization of greater than 80% is required. The design has a 714 MHz, 2 cavity subharmonic bunching system to allow for a luminosity upgrade to 1.4 ns bunch spacing. The population of individual bunches is a relatively modest 2x10^10 e-/bunch from the gun. This single bunch intensity target has been achieved in routine SLC operations with 80% polarization. The requirement of 95 successive bunches per beam pulse presents a significant challenge for initial electron production from the cathode due to the charge limit phenomenon [2]. R&D directed towards an NLC cathode capable of producing the requisite charge and polarization is ongoing at SLAC and Nagoya University. Care is also taken in the design of the bunching and linac systems to compensate for the long range longitudinal wakefield effects on the 95 bunch train.

### 3 POSITRON PRODUCTION

Positrons are produced by targeting a 6.22 GeV electron beam into an SLC style positron production system consisting of a water-cooled, 4 r.f. W-Re target followed by a 5.8 T magnetic flux concentrator, a 1.2 T tapered field solenoid, and a 0.5 T uniform field solenoid. L-band accelerator sections are used in the initial capture region to accelerate the beams to 250 MeV. After separation and removal of the electrons, the positrons are accelerated to the predamping ring energy of 1.98 GeV in an L-band linac. A yield of 2 positrons per electron into a phase space edge acceptance of 0.06 m-rad is expected. This yield normalized by the incident electron energy is a factor of 4 improvement over the SLC [3]. L-band (1428 MHz) has been chosen because of the large transverse aperture and longitudinal acceptance which are fully utilized in defining the acceptance and subsequent yield calculations. Energy loading in the initial capture regions is compensated using a $\Delta F$ correction scheme. AT compensation is employed in the rest of the L-band linac [4].

The 1998 failure of the SLC target has caused significant concern regarding the viability of the NLC positron system design which is based on the SLC system. The concern is whether the SLC system failed in an acute manner from exceeding the target damage threshold or from accumulated stress on the target. The former requires a significant redesign of the NLC positron systems whereas the latter means that the design is viable albeit the targets will age and require preemptive replacement. Analysis of the SLC target failure is being undertaken in collaboration with LLNL and LANL. This analysis is expected to be completed during the summer of 2000.

### 4 DAMPING RINGS

The vertical emittance of the beams is reduced by a factor of 3000 in the damping rings. The rings operate at 1.98 GeV and the design output emittances are $\gamma_{x_e} = 3 \times 10^{-6}$ m-rad and $\gamma_{y_e} = 3 \times 10^{-8}$ m-rad. The transverse damping time is 5.2 ms. Damping occurs dominantly from radiation produced in a 50 m wiggler section. Beams are damped in the rings for 25 ms (three inter-pulse periods); at any one time there are three pulse trains in each ring; the circumference of the rings is 300 m. A 1 MW, 714 MHz rf system generates gap voltages of 1.5 MV utilizing 3 PEP-II style damped, rf cavities [5]; the bunch length at extraction is $\sigma_z = 4$ mm. The rings are designed to operate at a maximum intensity of 1.6x10^10 particles per bunch whereas the nominal operating intensity is about 1.2x10^10.

A predamping ring reduces the initial positron rms emittances from $\gamma_{x_p} = \gamma_{y_p} = 0.04$ m-rad down to $\gamma_{x_p} = \gamma_{y_p} = 100 \times 10^{-6}$ m-rad for injection into the positron main damping ring. Beams are prepped for 16.6 ms; there are two pulse trains in the system at any time; the circumference of the predamping ring is 2 10 m [6].

### 5 INJECTOR LINACS

Seven rf linacs, six capture regions, and four compressor sections are required in the NLC Injector System. These linacs are based on L-band S-band, C-band and X-band rf systems. S-band linacs are used for the initial acceleration of electrons on both the electron and positron
side, for energy compression of electrons prior to injection into the damping ring, and for acceleration from 1.98 GeV to 8 GeV alter the damping rings on both sides. L-band linacs are used for the initial positron capture and acceleration to 1.98 GeV. L-band rf sections are also employed for energy compression of positrons prior to injection into the predamping ring and for the first stage of bunch length compression of both electrons and positrons. The linacs used for the second stage bunch length compression are based on the X-band technology being developed for the NLC main linacs. The beam loaded gradients in the L-band S-band and C-band linacs have been chosen to be 13 MV/m (15 MV/m), 17 MV/m (21 MV/m unloaded), and 35 MV/m (48 MV/m) respectively [7]. The operating gradient at X-band is 55 MV/m (75 MV/m unloaded).

The standard L-band rf module consists of a single klystron feeding a single SLED system which in turn powers three 5 m long accelerator sections. A standard S-band rf module has a single klystron powering a single SLED system with the outputs of two SLEDS combined to power six 4 m long accelerator sections (each klystron effectively feeds 3 accelerator sections). The standard C-band module is the same as the S-band except that the outputs of a pair of SLEDS klystrons power four 3 m long accelerator sections. Half of a standard NLC X-band klystron 8-pack powers six 1.8 m accelerator structures.

Both the L-band and S-band systems use double iris, side-wall coupled KEK style SLED-I rf compression systems [8]. The L-band SLEDs are scaled versions of the S-band SLEDS with modification to the coupling \( \beta \) for performance optimization. A single klystron feeds a SLED system. The outputs of the S-band SLEDS are combined and distributed to the accelerator sections. The combination of the SLEDS permits vernier control of the rf waveform for beam loading compensation while allowing for constant power delivery to the structures in the event that beam pulses are suppressed or shortened during a machine system protection fault and recovery. At X-band binary pulse compression (BPC) is used for rf pulse compression. Modification from the main linac DLDS configuration is required because the distance between the triplets of sections is reduced in the Injector System design with respect to the layout in the NLC main linacs.

The output of the S-band klystron is 65 MW for 5 \( \mu \)s. It is essentially an improved version of the SLAC 5045 tube. L-band klystrons of 75 MW, 6 \( \mu \)s should be achievable with existing technology. The X-band tubes are standard NLC 75 MW devices operated with a 1.5 \( \mu \)s pulse. The C-band klystrons have been specified at 75 MW for 4 us.

In total, the NLC Injector System design has 44 accelerator sections powered by 16 klystrons and 12 SLEDS at S-band. 42 accelerator sections powered by 25 klystrons and 17 SLEDS at L-band, and 12 accelerator sections powered by 8 klystrons and 2 BPCs. C-band hardware includes 178 structures and 89 klystrons and SLEDS. All of this hardware needs to be developed.

6 BUNCH LENGTH COMPRESSION

The bunch length of the extracted damping ring beam is reduced in 2 stages. A 140 MeV section of L-band linac and a lo-dipole wiggler reduces \( \sigma_z \) from 4 mm to 500-760 pm prior to injection into the prelinac. After acceleration to 8 GeV and precollimation, transport through a 163 m long 180° turn-around a 600 MeV X-band linac, and a 32-magnet dipole chicane reduces \( \sigma_z \) from 500-760 \( \mu \)m to 90-145 \( \mu \)m for injection into the main linacs. Three bunch length diagnostic stations provide tune-up and monitoring capability. Each \( \sigma_z \) station contains an optical port for streak camera measurements and an rf cavity for parasitic monitoring. For \( \sigma_z \geq 100 \mu \)m, streak camera resolution may not adequate in which case fourier spectroscopy techniques will be used. As a backup, the first diagnostic station in the main linac can be used as a bunch length monitor using a standard cross-phasing technique.

7 SPIN SYSTEM AND PRECOLLIMATION

Superconducting solenoids are used in conjunction with the bending in the damping ring transport lines to rotate the electron spin into the vertical for damping and then into arbitrary orientation for injection into the prelinac system. Alter the damping ring, the asymmetry in beam emittances dictates that the solenoids be split and separated by an optical transformation of +1 in X and -1 in Y to prevent vertical emittance dilution due to coupling. A Compton polarimeter located at injection to the main linac utilizes a laser wire IP, polarized laser light, and the second tune-up dumpline. Polarization measurements require dedicated beam time.

Initial collimation of transverse beam halo and tails occurs prior to transport through the 180° turn-around of the second bunch length compressor. Collimation is done using a set of 8 horizontal and 4 vertical, adjustable jaw pairs. Additional cleanup of the debris generated by the collimation takes place downstream in the high dispersion regions of the 180° turn-around.

8 REFERENCES

### Polarized Electron Source

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>120 keV</td>
</tr>
<tr>
<td>Energy Spread</td>
<td>&lt; 1 %</td>
</tr>
<tr>
<td>Single Bunch sigma E</td>
<td>&lt; 1 %</td>
</tr>
<tr>
<td>Emittance (edge)</td>
<td>5 (10^{-6}\text{m-rad})</td>
</tr>
<tr>
<td>Bunch Length</td>
<td>700 ps, FWHM</td>
</tr>
<tr>
<td>Particles/Bunch</td>
<td>1.8 (10^{10})</td>
</tr>
<tr>
<td>Pop. Uniformity</td>
<td>&lt;0.5 %</td>
</tr>
<tr>
<td>Number of Bunches</td>
<td>95</td>
</tr>
<tr>
<td>Bunch Spacing</td>
<td>2.8 ns</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>120 Hz</td>
</tr>
<tr>
<td>Polarization</td>
<td>80 %</td>
</tr>
</tbody>
</table>

### Thermionic Electron Source

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>120 keV</td>
</tr>
<tr>
<td>Energy Spread</td>
<td>&lt; 1 %</td>
</tr>
<tr>
<td>Single Bunch sigma E</td>
<td>&lt; 1 %</td>
</tr>
<tr>
<td>Emittance (edge)</td>
<td>5 (10^{-6}\text{m-rad})</td>
</tr>
<tr>
<td>Bunch Length</td>
<td>700 ps</td>
</tr>
<tr>
<td>Particles/Bunch</td>
<td>2 (10^{10})</td>
</tr>
<tr>
<td>Pop. Uniformity</td>
<td>&lt;0.5 %</td>
</tr>
<tr>
<td>Number of Bunches</td>
<td>95</td>
</tr>
<tr>
<td>Bunch Spacing</td>
<td>2.8 ns</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>120 Hz</td>
</tr>
</tbody>
</table>
### NLC Injection System Parameters

**Bunching system**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>$E$</td>
</tr>
<tr>
<td>Energy Spread</td>
<td>$dE/E$</td>
</tr>
<tr>
<td>Single Bunch sigma $E$</td>
<td>$sE/E$</td>
</tr>
<tr>
<td>Emittance</td>
<td></td>
</tr>
<tr>
<td>Bunch Length</td>
<td>$dt$</td>
</tr>
<tr>
<td>Particles/Bunch</td>
<td>$nb$</td>
</tr>
<tr>
<td>Pop. Uniformity, $sn$</td>
<td>$dnb/nb$</td>
</tr>
<tr>
<td>Number of Bunches</td>
<td>$Nb$</td>
</tr>
<tr>
<td>SHB frequency</td>
<td></td>
</tr>
<tr>
<td>Bunch Spacing</td>
<td></td>
</tr>
<tr>
<td>Repetition Rate</td>
<td></td>
</tr>
<tr>
<td>Beam power (@ exit)</td>
<td></td>
</tr>
</tbody>
</table>

### Positron Source

**Target**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>$E$</td>
</tr>
<tr>
<td>Emittance</td>
<td></td>
</tr>
<tr>
<td>Bunch Length</td>
<td>$dt$</td>
</tr>
<tr>
<td>electrons/bunch on target</td>
<td>$nb$</td>
</tr>
<tr>
<td>Pop. Uniformity</td>
<td>$dnb/nb$</td>
</tr>
<tr>
<td>Number of Bunches</td>
<td>$Nb$</td>
</tr>
<tr>
<td>Beam radius</td>
<td></td>
</tr>
<tr>
<td>beam power/area $N GeV/mm^2, 10^{12}$</td>
<td>1.0 &lt; 2 (ZDR p93)</td>
</tr>
<tr>
<td>absrbd tgt power/vol $N GeV/RL*mm^2, 10^{10}$</td>
<td>3.6 &lt; 7 (ZDR p93)</td>
</tr>
<tr>
<td>Bunch Spacing</td>
<td></td>
</tr>
<tr>
<td>Repetition Rate</td>
<td></td>
</tr>
<tr>
<td>Average Beam Power</td>
<td>$PB$</td>
</tr>
<tr>
<td>Target thickness</td>
<td>$W Re$</td>
</tr>
<tr>
<td>Target power</td>
<td>$PT$</td>
</tr>
</tbody>
</table>

### Capture

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF frequency</td>
<td>1428 MHz</td>
</tr>
<tr>
<td>bunch length</td>
<td>30 ps, FW</td>
</tr>
<tr>
<td>final energy</td>
<td>250 MeV</td>
</tr>
<tr>
<td>capture emittance</td>
<td>0.06 (edge) m-rad</td>
</tr>
<tr>
<td>energy aperture</td>
<td>±10 MeV</td>
</tr>
<tr>
<td>pre-DR acceptance</td>
<td>0.09 m-rad</td>
</tr>
<tr>
<td>e+ capture ratio into linac</td>
<td>2.0 [e+ per e-</td>
</tr>
<tr>
<td>e+ capture ratio into Pre-DR</td>
<td>0.8 = 2.0 * 4 [e+ per e-</td>
</tr>
</tbody>
</table>
### NLC Injection System Parameters

**Linacs**

**version date: 7/22/99**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pol. e- Injector</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>2856</td>
<td>MHz</td>
</tr>
<tr>
<td>Energy</td>
<td>1.98</td>
<td>GeV</td>
</tr>
<tr>
<td>Energy Spread</td>
<td>±1</td>
<td>%</td>
</tr>
<tr>
<td>Single Bunch sigma E</td>
<td>&lt;0.5</td>
<td>%</td>
</tr>
<tr>
<td>Emittance</td>
<td>100</td>
<td>(10^{-6})-m-rad</td>
</tr>
<tr>
<td>Bunch Length</td>
<td>17.5</td>
<td>ps, FWHM</td>
</tr>
<tr>
<td>Particles/Bunch</td>
<td>1.2</td>
<td>(10^{10})</td>
</tr>
<tr>
<td>Pop. Uniformity</td>
<td>&lt;0.5</td>
<td>%</td>
</tr>
<tr>
<td>Number of Bunches</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Bunch Spacing</td>
<td>2.8</td>
<td>ns</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>120</td>
<td>Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Positron drive linac</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>5712</td>
<td>MHz</td>
</tr>
<tr>
<td>Energy</td>
<td>6.22</td>
<td>GeV</td>
</tr>
<tr>
<td>Energy Spread</td>
<td>±1</td>
<td>%</td>
</tr>
<tr>
<td>Single Bunch sigma E</td>
<td>&lt;0.5</td>
<td>%</td>
</tr>
<tr>
<td>Emittance</td>
<td>100</td>
<td>(10^{-6})-m-rad</td>
</tr>
<tr>
<td>Bunch Length</td>
<td>17.5</td>
<td>ps, FWHM</td>
</tr>
<tr>
<td>Particles/Bunch</td>
<td>1.4</td>
<td>(10^{10})</td>
</tr>
<tr>
<td>Pop. Uniformity</td>
<td>&lt;0.5</td>
<td>%</td>
</tr>
<tr>
<td>Number of Bunches</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Bunch Spacing</td>
<td>2.8</td>
<td>ns</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>120</td>
<td>Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Positron Injector linac</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>1428</td>
<td>MHz</td>
</tr>
<tr>
<td>Energy</td>
<td>1.98</td>
<td>GeV</td>
</tr>
<tr>
<td>Energy Spread</td>
<td>±1</td>
<td>%</td>
</tr>
<tr>
<td>Single Bunch sigma E</td>
<td>&lt;1.2</td>
<td>%</td>
</tr>
<tr>
<td>Emittance</td>
<td>0.06 (edge)</td>
<td>m-rad</td>
</tr>
<tr>
<td>Bunch Length</td>
<td>3.7</td>
<td>mm, sigma</td>
</tr>
<tr>
<td>Particles/Bunch</td>
<td>2.8</td>
<td>(10^{10})</td>
</tr>
<tr>
<td>Pop. Uniformity</td>
<td>&lt;1</td>
<td>%</td>
</tr>
<tr>
<td>Number of Bunches</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Bunch Spacing</td>
<td>2.8</td>
<td>ns</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>120</td>
<td>Hz</td>
</tr>
<tr>
<td>Pre-DR acceptance</td>
<td>0.09</td>
<td>m-rad</td>
</tr>
<tr>
<td>Energy acceptance</td>
<td>±1.5</td>
<td>%</td>
</tr>
</tbody>
</table>
## NLC Injection System Parameters

**version date: 7/22/99**

### Injector linacs (e⁻&e⁺)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>5712 MHz</td>
</tr>
<tr>
<td>Energy</td>
<td>6 GeV</td>
</tr>
<tr>
<td>Energy Spread</td>
<td>±1 %</td>
</tr>
<tr>
<td>Single Bunch sigma E</td>
<td>&lt; 1.5 %</td>
</tr>
<tr>
<td>Horizontal Emittance</td>
<td>3 10^-6m-rad</td>
</tr>
<tr>
<td>Vertical Emittance</td>
<td>0.03 10^-6m-rad</td>
</tr>
<tr>
<td>Bunch Length sigma z</td>
<td>100 microns</td>
</tr>
<tr>
<td>Particles/Bunch nb</td>
<td>1.15 10^10</td>
</tr>
<tr>
<td>Number of Bunches Nb</td>
<td>95</td>
</tr>
<tr>
<td>Bunch Spacing</td>
<td>2.8 ns</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>120 Hz</td>
</tr>
</tbody>
</table>

### Damping Rings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Main Rings</th>
<th>Pre-Damping Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal ring energy E</td>
<td>1.98 GeV</td>
<td>1.98 GeV</td>
</tr>
<tr>
<td>number of bunch trains stored Nt</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>number of bunches per train Nb</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>maximum bunch population nb</td>
<td>1.6 10^10</td>
<td>1.9 10^10</td>
</tr>
<tr>
<td>bunch to bunch spacing ns</td>
<td>2.8 nsec</td>
<td>2.8 nsec</td>
</tr>
<tr>
<td>gap between bunch trains ns</td>
<td>65 nsec</td>
<td>100 nsec</td>
</tr>
<tr>
<td>maximum collider repetition rate</td>
<td>120 Hz</td>
<td>120 Hz</td>
</tr>
<tr>
<td>RF frequency</td>
<td>714 MHz</td>
<td>714 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal ring circumference</td>
<td>297.27 m</td>
</tr>
<tr>
<td>Number of TME-cells per arc</td>
<td>15</td>
</tr>
<tr>
<td>Length of one TME-cell</td>
<td>6.01 m</td>
</tr>
<tr>
<td>Bend angle of arc dipole</td>
<td>12 deg</td>
</tr>
<tr>
<td>Length of straight section</td>
<td>58.00 m</td>
</tr>
<tr>
<td>average radius of an arc</td>
<td>28.85 m</td>
</tr>
<tr>
<td>Length of a wiggler section</td>
<td>2.19 m</td>
</tr>
<tr>
<td>Number of wiggler sections</td>
<td>20</td>
</tr>
<tr>
<td>Peak field of wiggler</td>
<td>21.5 kG</td>
</tr>
<tr>
<td>Wiggler period</td>
<td>0.27 m</td>
</tr>
<tr>
<td>vertical gap of wiggler</td>
<td>~20 mm</td>
</tr>
<tr>
<td>periods per wiggler section</td>
<td>8.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>inj. hor./ver. emittance (norm., rms) ex0,y0</td>
<td>150 10^-6m-rad</td>
</tr>
<tr>
<td>extracted horiz. emittance (norm., rms) ex</td>
<td>3 10^-6m-rad</td>
</tr>
<tr>
<td>extracted vert. emittance (norm., rms) ey</td>
<td>0.03 10^-6m-rad</td>
</tr>
<tr>
<td>extracted energy spread (rms)</td>
<td>0.089 %</td>
</tr>
</tbody>
</table>

Injector parameters.xls 4 of 3  DCS 3/5/2000
<table>
<thead>
<tr>
<th>NLC Injection System Parameters</th>
<th>version date: 7/22/99</th>
</tr>
</thead>
<tbody>
<tr>
<td>extracted bunch length (rms)</td>
<td>4 mm</td>
</tr>
<tr>
<td>damping time</td>
<td>( \tau_{x,y} )</td>
</tr>
<tr>
<td></td>
<td>5.2 msec</td>
</tr>
<tr>
<td></td>
<td>5.0 msec</td>
</tr>
</tbody>
</table>
E- Injector System CDR 0.4
# CDR 0.4 Electron Injector Tunnel Lengths

<table>
<thead>
<tr>
<th>WBS Area</th>
<th>Beam Line Lengths (m)</th>
<th>Sub-Beam Line</th>
<th>Sub-Beam Line Lengths (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e- SRCS</td>
<td>33</td>
<td>e- Source</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for e-</td>
<td></td>
</tr>
<tr>
<td>e- BSTR</td>
<td>163</td>
<td>e- Booster</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linac</td>
<td></td>
</tr>
<tr>
<td>e- MDR LTR</td>
<td>91</td>
<td>e- MDR LTR</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e- Main Damping R</td>
<td>297</td>
<td>e- MDR</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e- MDR BC-1</td>
<td>187</td>
<td>e- MDR BC-1</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e- Pre-Linac</td>
<td>386</td>
<td>e- Pre-Linac</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>e- Pre-Collimation</td>
<td>152</td>
</tr>
<tr>
<td>e- BC-2</td>
<td>244</td>
<td>e- BC-2 X-band</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e- BC-2 Arc</td>
<td>164</td>
</tr>
</tbody>
</table>
E+ Injector System CDR 0.4
## CDR 0.4 Positron System Tunnel Lengths

<table>
<thead>
<tr>
<th>WBS Area</th>
<th>Beam Line Lengths (m)</th>
<th>Sub-Beam Line</th>
<th>Sub-Beam Line Lengths (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e- SRCS</td>
<td>33</td>
<td>e- Source for e+</td>
<td>33</td>
</tr>
<tr>
<td>Drive Linac</td>
<td>275</td>
<td>Drive Linac</td>
<td>275</td>
</tr>
<tr>
<td>e+ SRCS</td>
<td>276</td>
<td>e+ Capture Section 2</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drive Target Line 1</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drive Target Line 2</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drive Target Lines (Common)</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e+ Capture Lines (Common)</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e+ Capture Section 1</td>
<td>61</td>
</tr>
<tr>
<td>e+ BSTR</td>
<td>186</td>
<td>e+ Booster Linac</td>
<td>186</td>
</tr>
<tr>
<td>e+ PDR LTR</td>
<td>91</td>
<td>e+ PDR LTR</td>
<td>91</td>
</tr>
<tr>
<td>e+ PDR</td>
<td>218</td>
<td>e+ PDR</td>
<td>218</td>
</tr>
<tr>
<td>e+ PTM</td>
<td>60</td>
<td>e+ PTM</td>
<td>60</td>
</tr>
<tr>
<td>e+ Main Damping Ring</td>
<td>297</td>
<td>e+ MDR</td>
<td>297</td>
</tr>
<tr>
<td>e+ BC1</td>
<td>187</td>
<td>e+ BC1</td>
<td>187</td>
</tr>
<tr>
<td>e+ Pre-Linac</td>
<td>386</td>
<td>e+ Pre-Collimation</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e+ Pre-Linac</td>
<td>234</td>
</tr>
<tr>
<td>e+ BC-2</td>
<td>244</td>
<td>e+ BC-2 X-band</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e+ BC-2 Arc</td>
<td>164</td>
</tr>
</tbody>
</table>
## RF Count by Area

<table>
<thead>
<tr>
<th>RF Component</th>
<th>e-SRCS</th>
<th>e-BSTR</th>
<th>e-Pre-Linac</th>
<th>e-BC</th>
<th>Drive Linac</th>
<th>e+ SRCS</th>
<th>e+BSTR</th>
<th>e+ Pre-Linac</th>
<th>e+ BC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klystron/Amp</td>
<td></td>
</tr>
<tr>
<td>714 MHz Amplifier Module</td>
<td>4</td>
<td>29</td>
<td>31</td>
<td></td>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td>8</td>
<td>89</td>
</tr>
<tr>
<td>C-Band Klystron</td>
<td></td>
</tr>
<tr>
<td>L-Band Klystron</td>
<td></td>
</tr>
<tr>
<td>S-Band Klystron</td>
<td>4</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>17</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>X-Band Klystron</td>
<td></td>
</tr>
<tr>
<td>LLRF</td>
<td></td>
</tr>
<tr>
<td>714 MHz LLRF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Klystron LLRF</td>
<td>4</td>
<td>12</td>
<td>29</td>
<td>8</td>
<td>31</td>
<td>8</td>
<td>17</td>
<td></td>
<td>29</td>
<td>146</td>
</tr>
<tr>
<td>Modulator/PS</td>
<td></td>
</tr>
<tr>
<td>714 MHz SHB Driver</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>C-Band Modulator</td>
<td></td>
</tr>
<tr>
<td>L-Band Modulator</td>
<td></td>
</tr>
<tr>
<td>S-Band Modulator</td>
<td>4</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>17</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>X-Band Modulator</td>
<td></td>
</tr>
<tr>
<td>Structures/Cavity</td>
<td></td>
</tr>
<tr>
<td>714 MHz SHB Cavity</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>C-Band Structure</td>
<td></td>
</tr>
<tr>
<td>L-Band Structure</td>
<td></td>
</tr>
<tr>
<td>RF BPM Electronics</td>
<td>24</td>
<td>168</td>
<td>174</td>
<td>18</td>
<td>166</td>
<td>24</td>
<td>102</td>
<td>174</td>
<td>18</td>
<td>828</td>
</tr>
<tr>
<td>S-Band Buncher Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>S-Band Structure</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>X-Band Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Support</td>
<td></td>
</tr>
<tr>
<td>C-Band Accelerator Support</td>
<td></td>
</tr>
<tr>
<td>L-Band Accelerator Support</td>
<td></td>
</tr>
<tr>
<td>L-Band Capture Support</td>
<td></td>
</tr>
<tr>
<td>RF Structure Mover</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>S-Band Accelerator Support</td>
<td></td>
</tr>
<tr>
<td>S-Band Buncher Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>X-Band Compressor Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Sunday, March 05, 2000

Scott Anderson
<table>
<thead>
<tr>
<th>WaveGuide</th>
<th>e- SRCs</th>
<th>e- BSTR</th>
<th>e- Pre-Linac</th>
<th>e- BC-2</th>
<th>Drive Linac</th>
<th>e+ SRCs</th>
<th>e+ BSTR</th>
<th>e+ Pre-Linac</th>
<th>e+ BC-2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>714 MHz Module WG Module</td>
<td>4</td>
<td></td>
<td>29</td>
<td>31</td>
<td></td>
<td>29</td>
<td></td>
<td>17</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>C-Band Accelerator WG module</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>L-Band Accelerator WG module</td>
<td>6</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>L-Band Capture WG Module</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>S-Band Accelerator WG module</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>X-Band Buncher WG module</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| x-Band Compressor WG module     |         |         | 1            |         |             |         |         | 1            |         | 2     |</p>
<table>
<thead>
<tr>
<th>Sub-System</th>
<th>Magnet Name</th>
<th>e- SRCs</th>
<th>e- BSTR</th>
<th>e- Pre-Linac</th>
<th>e- BC-2</th>
<th>Drive Linac</th>
<th>e+ SRCs</th>
<th>e+ BSTR</th>
<th>e+ Pre-Linac</th>
<th>e+ BC-2</th>
<th>Injector Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corr</td>
<td>15.0B30_15G-m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Corr</td>
<td>2.5B12.5_10G-m</td>
<td></td>
<td>176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>176</td>
</tr>
<tr>
<td>Corr</td>
<td>2.5B12.5_60G-m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Corr</td>
<td>Quad Corrector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>74</td>
<td></td>
<td></td>
<td>192</td>
<td>54</td>
</tr>
<tr>
<td>Dipole</td>
<td>1.0B50</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Dipole</td>
<td>1.22B331.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Dipole</td>
<td>1.22B98.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>Dipole</td>
<td>12.7B36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Dipole</td>
<td>2.50B200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Dipole</td>
<td>2.50B30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Quad</td>
<td>1.0Q25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Quad</td>
<td>1.0Q50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Quad</td>
<td>1.5Q25.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>Quad</td>
<td>15QW32.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Quad</td>
<td>2.5Q27.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>37</td>
<td></td>
<td></td>
<td>373</td>
</tr>
<tr>
<td>Quad</td>
<td>23QW43.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>188</td>
</tr>
<tr>
<td>Quad</td>
<td>5.0Q15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>Quad</td>
<td>6.0Q10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Sext</td>
<td>1520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>