Preliminary Results of the Ground Vibration Measurements at Potential Linear Collider Sites and Reference Places*

Wilhelm Bialowons and Heiko Ehrlichmann
Deutsches Elektronen-Synchrotron DESY · Hamburg
March 28, 2003

Power Spectrum (Density)
A. Seryi SLAC-PUB-8893

Feedback Circuit of a Velocity Broadband Seismometer
E. Wielandt, University of Stuttgart, Seismic Sensors and their Calibration

* Done with the help of Ralph Wolfgang Assmann, William Coosemans and Stefano Redaelli from CERN; Volker Behrens; Hui Fricke from GSF; Thomas Jahr and Wernfrid Kühnel from University of Jena; Jerry Aarons, Clay Corvin, Fred Asiri, Keith Jobe, Frederic Le Pimpec, Marc Ross, Andrei Seryi and Javier Sevilla from SLAC; Thorsten Bierer and Jürgen Grabe from TUHH.
Overview

- **Introduction**
 - Why do we make seismic measurements?
 - Snowmass 2001 Working Group T6

- **Broadband seismometer**
 - CMG-3T Sensor from Güralp, UK
 - Detection of an earthquake

- **Theory**
 - Fourier Transformation
 - Integrated Motion Spectra
 - Coherence Spectra
 - Power Spectral Density

- **Reference Measurements**
 - Moxa: Seismic station near Jena
 - Asse: Research mine operated by GSF

- **Site Measurements**
 - Measurements at DESY and Ellerhoop
 - Measurements at CERN and LHC P4

- **Measurements at SLAC**
 - In Building 6 and Sector 10
 - At California Copper Mountain Site

- **Summary**

Overview

- **Introduction**
 - Why do we make seismic measurements?
 - Snowmass 2001 Working Group T6

- **Broadband seismometer**
 - CMG-3T Sensor from Güralp, UK
 - Detection of an earthquake

- **Theory**
 - Fourier Transformation
 - Integrated Motion Spectra
 - Coherence Spectra
 - Power Spectral Density

- **Reference Measurements**
 - Moxa: Seismic station near Jena
 - Asse: Research mine operated by GSF

- **Site Measurements**
 - Measurements at DESY and Ellerhoop
 - Measurements at CERN and LHC P4

- **Measurements at SLAC**
 - In Building 6 and Sector 10
 - At California Copper Mountain Site

- **Summary**

Feedback Circuit of a Broadband Seismometer

CMG-3T from Güralp, UK (open)

- **South Sandwich Islands Region**
 - Measurements at HERA 17.12.2002, 6:36 h

Broadband Seismometer and Detection of an Earth Quake.
Seven Second Hum measured at SLAC Building 006.
Cultural Noise measured at DESY and SLAC Building 006.
Overview

- Introduction
 - Why do we make seismic measurements?
 - Snowmass 2001 Working Group T6
- Broadband seismometer
 - CMG-3T Sensor from Güralp, UK
 - Detection of an earthquake
- Theory
 - Fourier Transformation
 - Integrated Motion Spectra
 - Coherence Spectra
 - Power Spectral Density
- Reference Measurements
 - Moxa: Seismic station near Jena
 - Asse: Research mine operated by GSF
- Site Measurements
 - Measurements at DESY and Ellerhoop
 - Measurements at CERN and LHC P4
- Measurements at SLAC
 - In Building 6 and Sector 10
 - At California Copper Mountain Site
- Summary

\[\hat{x}_n \in \mathbb{R}, \ \forall n \in \mathbb{N}_N = \{0, \ldots, N - 1\} \]
\[\tilde{x}_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{-i \frac{2\pi}{N} \frac{k}{n}} \]
\[\sqrt{\langle a_n^2 \rangle_m} = \sqrt{\sum_{k=m}^{N-1} 2 \bar{a}_k a^*_k + \bar{a}^2_{N/2}} \]
\[c(\omega_k) = \frac{\text{Re}(\tilde{x}_k \tilde{y}^*_k)}{\|\tilde{x}_k\| \|\tilde{y}_k\|} \]
\[p(\omega_k) = \frac{\tilde{x}_k \tilde{y}^*_k}{\omega_k^2} N \Delta t \]

Discrete Fourier Transformation.
Overview

- Introduction
 - Why do we make seismic measurements?
 - Snowmass 2001 Working Group T6
- Broadband seismometer
 - CMG-3T Sensor from Güralp, UK
 - Detection of an earth quake
- Theory
 - Fourier Transformation
 - Integrated Motion Spectra
 - Coherence Spectra
 - Power Spectral Density
- Reference Measurements
 - Moxa: Seismic station near Jena
 - Asse: Research mine operated by GSF
- Site Measurements
 - Measurements at DESY and Ellerhoop
 - Measurements at CERN and LHC P4
- Measurements at SLAC
 - In Building 6 and Sector 10
 - At California Copper Mountain Site
- Summary

Reference Measurements at the Research Mine Asse.
Cross Section of the Research Mine Asse.
Overview

- **Introduction**
 - Why do we make seismic measurements?
 - Snowmass 2001 Working Group T6

- **Broadband seismometer**
 - CMG-3T Sensor from Güralp, UK
 - Detection of an earthquake

- **Theory**
 - Fourier Transformation
 - Integrated Motion Spectra
 - Coherence Spectra
 - Power Spectral Density

- **Reference Measurements**
 - Moxa: Seismic station near Jena
 - Asse: Research mine operated by GSF

- **Site Measurements**
 - Measurements at DESY and Ellerhoop
 - Measurements at CERN and LHC P4

- **Measurements at SLAC**
 - In Building 6 and Sector 10
 - At California Copper Mountain Site

- **Summary**

Reference Measurements at the Research Mine Asse.
Overview

- **Introduction**
 - Why do we make seismic measurements?
 - Snowmass 2001 Working Group T6
- **Broadband seismometer**
 - CMG-3T Sensor from Güralp, UK
 - Detection of an earthquake
- **Theory**
 - Fourier Transformation
 - Integrated Motion Spectra
 - Coherence Spectra
 - Power Spectral Density

- **Reference Measurements**
 - Moxa: Seismic station near Jena
 - Asse: Research mine operated by GSF

- **Site Measurements**
 - Measurements at DESY and Ellerhoop
 - Measurements at CERN and LHC P4

- **Measurements at SLAC**
 - In Building 6 and Sector 10
 - At California Copper Mountain Site

- **Summary**

Measurements at DESY and CERN in 2002 and 2003.
Overview

- **Introduction**
 - Why do we make seismic measurements?
 - Snowmass 2001 Working Group T6

- **Broadband seismometer**
 - CMG-3T Sensor from Güralp, UK
 - Detection of an earthquake

- **Theory**
 - Fourier Transformation
 - Integrated Motion Spectra
 - Coherence Spectra
 - Power Spectral Density

- **Reference Measurements**
 - Moxa: Seismic station near Jena
 - Asse: Research mine operated by GSF

- **Site Measurements**
 - Measurements at DESY and Ellerhoop
 - Measurements at CERN and LHC P4

- **Measurements at SLAC**
 - In Building 6 and Sector 10
 - At California Copper Mountain Site

- **Summary**

HERA WL745

Ellerhoop

CERN Workshop and Laboratory

LHC P4

Measurements at DESY and CERN in 2002 and 2003.
Overview

• Introduction
 • Why do we make seismic measurements?
 • Snowmass 2001 Working Group T6

• Broadband seismometer
 • CMG-3T Sensor from Güralp, UK
 • Detection of an earthquake

• Theory
 • Fourier Transformation
 • Integrated Motion Spectra
 • Coherence Spectra
 • Power Spectral Density

• Reference Measurements
 • Moxa: Seismic station near Jena
 • Asse: Research mine operated by GSF

• Site Measurements
 • Measurements at DESY and Ellerhoop
 • Measurements at CERN and LHC P4

• Measurements at SLAC
 • In Building 6 and Sector 10
 • At California Copper Mountain Site

• Summary

Measurements at SLAC in March 2003.
Overview

- **Introduction**
 - Why do we make seismic measurements?
 - Snowmass 2001 Working Group T6
- **Broadband seismometer**
 - CMG-3T Sensor from Güralp, UK
 - Detection of an earthquake
- **Theory**
 - Fourier Transformation
 - Integrated Motion Spectra
 - Coherence Spectra
 - Power Spectral Density
- **Reference Measurements**
 - Moxa: Seismic station near Jena
 - Asse: Research mine operated by GSF
- **Site Measurements**
 - Measurements at DESY and Ellerhoop
 - Measurements at CERN and LHC P4
- **Measurements at SLAC**
 - In Building 6 and Sector 10
 - At California Copper Mountain Site
- **Summary**
Overview

- **Introduction**
 - Why do we make seismic measurements?
 - Snowmass 2001 Working Group T6

- **Broadband seismometer**
 - CMG-3T Sensor from Güralp, UK
 - Detection of an earthquake

- **Theory**
 - Fourier Transformation
 - Integrated Motion Spectra
 - Coherence Spectra
 - Power Spectral Density

- **Reference Measurements**
 - Moxa: Seismic station near Jena
 - Asse: Research mine operated by GSF

- **Site Measurements**
 - Measurements at DESY and Ellerhoop
 - Measurements at CERN and LHC P4

- **Measurements at SLAC**
 - In Building 6 and Sector 10
 - At California Copper Mountain Site

- **Summary**

Don’t