Magnet Configurations

Bends are on strings in

MDRs, PPDR, LTRs, RTLs, BC2s, IRTs
MDR bends have trims for orbit correction
PPDR needs correction elements added

Quads & Sexts have individual supplies

all need trim supplies for BBA if on strings
(used rarely, one at a time)
linac quads need DC trims for lattice adjustment
Candidates for strings

- Linac sector quads - main & injector linacs - 20% DC trim
- Linac diagnostic section quads (11 of 14) - 20% trim
- DR arc and wiggler quads - 2% trim
- DR sextupoles - 20% trim
- BC2 quads - 20% trim
- IRT big bend, SCS, and CCS quads - 20% trim
- maybe LTRs, RTLs, other

All trims except linacs for BBA only
Caveats:

- CD1 estimates contain many errors and shortcuts, e.g. trims on individual supplies in DRs, oversized cable and power supplies, etc.
 Improved estimates will significantly reduce the cost even without strings.
- Estimates depend on string length, redundancy, etc.
- Optics considerations need study:
 - Tighter tolerances for supply stability
 - Reduced flexibility in optics tuning
 - Simulations of beam based alignment
- Savings from conventional facilities not yet estimated
Cost Model (1)

BC2 bend string (15 KW - 11 magnets, incl. short cables)
$38.5K ($3.5K/magnet)

individual supply (2.5 KW - smallest used)
$23.6K

long cables (same cost for 2.5/5/10/15 KW supplies)
at $5.6K (cable) + 3.6K (install) + 6.7K (tray)
$16K/unit - $1.5K/magnet (for string)

Cost savings (PS only) - 85% (cable) - 90%
from Carl Rago

8/17/99
Cost Model (2)

MDR quads (20 KW individual supply)

$41K per magnet

from J.J. Lipari

Strings - 8 magnets (75 KW - 4 out of 5 rack mounted)

switchable boost supply (2.5 KW, 4 per 120 ch)

$8.8K per magnet

from J.J. Lipari

120 arc quads/MDR

individual @ $41K = $4,929K

16 strings @ $62.8K+ 4 boosts @ $15.3 = $1,059K

Cost savings (PS only) - 78% (cable) - ???
e^+/e^- MDR Summary

<table>
<thead>
<tr>
<th></th>
<th>of</th>
<th>CD1</th>
<th>Strings</th>
<th>Savings</th>
<th>Trim removal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># total #</td>
<td>K$/unit K$ total</td>
<td>K$ total K$</td>
<td>% removal</td>
<td></td>
</tr>
<tr>
<td>arc quads</td>
<td>120 128</td>
<td>41.1 4932.0</td>
<td>997.4 3873.2</td>
<td>78.5%</td>
<td></td>
</tr>
<tr>
<td>arc quad trims</td>
<td>120 128</td>
<td>15.3 1839.7</td>
<td>61.3 1839.7</td>
<td>1839.7</td>
<td></td>
</tr>
<tr>
<td>wiggler quads</td>
<td>28 36</td>
<td>45.5 1273.4</td>
<td>304.2 944.4</td>
<td>74.2%</td>
<td></td>
</tr>
<tr>
<td>wiggler quad trims</td>
<td>28 36</td>
<td>15.3 429.3</td>
<td>24.7 429.3</td>
<td>429.3</td>
<td></td>
</tr>
<tr>
<td>sextupoles</td>
<td>120 120</td>
<td>24.5 2935.3</td>
<td>778.1 2060.2</td>
<td>70.2%</td>
<td></td>
</tr>
<tr>
<td>sextupole trims</td>
<td>120 120</td>
<td>15.3 1839.7</td>
<td>97.1 1839.7</td>
<td>1839.7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13249.4 2262.9</td>
<td>6877.8 75.2%</td>
<td>4108.7</td>
<td></td>
</tr>
</tbody>
</table>

* Trims are unnecessary with individual supplies
Note: PEPII style interlocks assumed - cost should go down

Cost savings - 6.9M$ / ring - 75% (+ 4.1M$ *2 trims)
+ cable, AC distribution, cooling ...
NLC Summary

<table>
<thead>
<tr>
<th></th>
<th>of CD1 Strings</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># total #</td>
<td>WBS K$</td>
</tr>
<tr>
<td>E Bstr</td>
<td>46 46</td>
<td>1165 1165</td>
</tr>
<tr>
<td>Drive</td>
<td>94 94</td>
<td>2406 2406</td>
</tr>
<tr>
<td>P Bstr</td>
<td>121 121</td>
<td>3064 3064</td>
</tr>
<tr>
<td>P Plin</td>
<td>82 129</td>
<td>3267 2077</td>
</tr>
<tr>
<td>E Plin</td>
<td>82 129</td>
<td>3267 2077</td>
</tr>
<tr>
<td>P BC2</td>
<td>179 195</td>
<td>4939 4534</td>
</tr>
<tr>
<td>E BC2</td>
<td>179 195</td>
<td>4939 4534</td>
</tr>
<tr>
<td>E MDR</td>
<td>270 286</td>
<td>16391 9138</td>
</tr>
<tr>
<td>P MDR</td>
<td>270 286</td>
<td>16391 9138</td>
</tr>
<tr>
<td>PPDR</td>
<td>214 222</td>
<td>6668 3842</td>
</tr>
<tr>
<td>ML 500</td>
<td>730 736</td>
<td>39917 39592</td>
</tr>
<tr>
<td>IRT Big Bend</td>
<td>66 66</td>
<td>1178 1178</td>
</tr>
<tr>
<td>IRT SCS +</td>
<td>54 54</td>
<td>1927 1927</td>
</tr>
<tr>
<td>IRT other (50%)</td>
<td>7816 3908</td>
<td>1954 1954</td>
</tr>
<tr>
<td>Total</td>
<td>2387 2559</td>
<td>88579 26612</td>
</tr>
</tbody>
</table>

Note: assumed cost is 25% for simple strings, 30% for linac quads

Cost savings - 60M$ (incl. cable) + more from CF ...

8/17/99
Permanent Magnets

- Injector linac quads need trims for optics adjustment could be permanent with hybrid design

- DR bends, quads, sexts
 design calls for ±5% energy range for flexibility
 also radiation damage concerns
 → not a good candidate

- BC2 bends could be permanent magnets, but lose energy flexibility or must have trims - may be OK

- BC2 quads must adjust for bunch length, unless change can be done with BC1
Permanent Magnets (2)

• Main linac quads need trims for optics adjustment

• A. Ringwall & J. Frisch have possible hybrid design

• If trims can be weak enough to avoid water cooling, reduces vibration sources plus cost savings on plumbing, Conv.Fac.

• But what range of CM energy must be accommodated? Top @ 350 Gev? Higgs @ 200 Gev? Z @ 90 Gev? also 2nd 1/2 of linac must upgrade to 1 Tev
→ this is likely a show stopper