Introduction to the NLC Linac

Design Overview
Lattice
Emittance Preservation
Linac Design Challenges

Efficient Acceleration of the Beams
- Since ZDR, Have Improved the Designs of the Modulators, Klystrons, RF Distribution System and Accelerator Structures

Preservation of the Small Beam Emittances
- By Design: e.g., Suppress Long-Range Transverse Wakefield by Damping and Detuning the Accelerator Structure Dipole Modes
- By Beam-Based Methods: Use to Center the Beams in the Structures, Align Quadrupole Magnets and to Stabilize Orbits

Machine Protection
- Phased Turn-On Starting with Non-Destructive Pilot Bunch
- Monitor Inter-Pulse Changes that Could Adversely Affect Beams
Linac Tunnel
(4.3 m ID)

Waveguide to Transport RF

Girder Supporting 3 Accelerator Structures

Quadrupole Magnet on Mover Stand
Section of Linac Beamline

Support Tube

Accelerator Structure

RF Feed

Three Accelerator Structures on a Support Girder
Beam-Based Alignment and Steering Equipment

Quad with BPM:
1 pm x/y resolution

RF structures, each with
2-mode BPMs (1 each end),
5 pm x/y resolution

Quad with BPM:
1 pm x/y resolution

Remote-controlled girder translation stage, x/y degrees of freedom each end

Remote-controlled magnet translation stage, x/y degrees of freedom

P. Tenenbaum (5/99)
LINAC OPTICS

- Make $\langle \beta \rangle \approx \beta_o \sqrt{E/E_o}$ so energy spread for BNS damping is roughly constant along the linacs.

- Choose $\beta_o \approx 4 \text{ m}$ to balance emittance growth sensitivities:

 Quad Misalignment + Initial Energy Spread $\sim \beta_o^{-2}$
 Quad Vibration (e.g., from Ground Motion) $\sim \beta_o^{-2}$
 Quad Misalignment + BNS Energy Spread $\sim \beta_o^{0}$
 Structure Misalignment + Wakefields $\sim \beta_o^{+1}$
Linac Bandwidth

Test NLC linac doublet & FODO lattice with 3, 6, 9 structures per half cell. 6 quads per transition.

X (solid), Y (dot)
NLC linac: Diagnostics section 2.

Distance (m)

Beta (m)

RF

3x45°

chicane

L_c = 8 m

Y. Nosochkov (5/98)
Wakefield Effects

Resonate (Beam Break-Up)
- Characterized by betatron amplification or the emittance growth from an induced oscillation (usually a one sigma offset at injection).
- Short-range (within the bunch): head-to-tail kicks offset by stronger tail focusing (BNS damping).
- Long-range (bunch-to-bunch): wakefield suppressed by detuning and damping dipole modes.

Non-Resonate (Structure Misalignments)
- Characterized by emittance growth of bunches and bunch train.
- Short-range effect suppressed by centering the bunches on average.
 - Dipole signals used for this purpose (SBPMs).
- Long-range effect mainly reduced by structure straightness.
Example Of BNS Energy Spread Profile Along the Linac

![Chart showing energy spread profile along the Linac with comparison of wakes for different values of parameter a/λ.]

- Bunch Rides Behind Crest

Distance Along Linac (m)

G. Stupakov (7/98)
Correlated Energy Variation Along the Bunches (top) and the Bunch Energy Distribution (bottom) at the End of the Linacs
Normalized Betatron Oscillation (top) due to an Initial 1σ Beam Offset (No Initial Energy Spread) and the Resulting Emittance Growth (bottom)

ZDR Chapter 7
Single bunch betatron amplification due to transverse wakefields

head ← Z → tail.
Interior Views of the Damped and Detuned Structure (DDS)
Dispersion Effects

Resonate (Filamentation)

- Characterized by betatron damping or the emittance growth from an induced oscillation (usually a one sigma offset at injection).
- Growth depends mainly on initial uncorrelated energy spread (about 1.5%): bunch-to-bunch energy variation is smaller.
- ‘Slow’ Jitter sources are suppressed by feedback systems and the quad alignment algorithm.

Non-Resonate (Quadrupole Misalignments)

- Characterized by emittance growth of bunches (= bunch train)
- Growth depends on total energy spread and quadrupole alignment.
- Use beam-based approach to maintain quad alignment: results depend on
 - BPM-to-quad magnetic offsets: measured by shunting
 - BPM resolution
SLC TRAJECTORY FEEDBACK

Diagram showing the flow of electrons (e⁻) through a system with correctors, a micro-processor, and BPMs. Below the diagram is a graph plotting Betatron Amplitude Attenuation (60 Hz Sampling Rate) versus Frequency (Hz), with measurements and theory lines.

Measurements

Theory
QUADRUPOLEMAGNETALIGNMENT

Sensitivity: Sinusoidal Misalignment \(-\text{vs-} \text{ Wavelength (h)}\)
that yields 25% Dispersive \(\varepsilon_y\) Growth with 0.6% \(\sigma_E/E\)

- For long-range alignment \((\lambda > 200 \text{ m})\), use conventional surveying techniques, including Global Positioning System data.

- For short-range alignment \((\lambda < 200 \text{ m})\), use a beam-based approach:

1) With data from \(N\) BPMs in \(N\) Quads, compute \(N\)-2 Quad offsets.
2) Move Quads to null the offsets.
3) Repeat for next set of \(N\) Quads, starting with last Quad of last set.
Beam-Based Alignment and Steering

- Linac is aligned upstream-downstream, continuously (30 minutes per pass)
- Several algorithms tested over last 5 years
- Present algorithm appears satisfactory
- Additional improvement possible with orbit bumps (SLC)

P. Tenenbaum (5/99)
Quad Vibration Effects

Fast (seconds)
- Characterized by decrease in luminosity due to beam offsets at IP.
- Sources: ground motion is large but highly correlated: mainly need to limit random vibrations from cultural sources.
- Induced oscillations suppressed by feedback (FB) systems.

Slow (hours)
- Characterized by emittance growth of bunches (= bunch train) due to resonate and non-resonate dispersion.
- Model ground motion using ATL ‘law’.
- Use feedback systems to suppress oscillations and the alignment algorithm to realign quads.
GROUND MOTION

- Why is Ground Motion a Concern for the NLC:

 It will move the quadrupole magnets, which will steer the beams and cause them to miss at the IP: →←

- Temporal Scale of Problem:

 Motion ≤ 0.1 Hz heavily suppressed by trajectory feedback loops. Motion ≥ 10 Hz generally not significant.

- Spatial Scale of Problem:

 More sensitive to uncorrelated motion,

 \[
 \text{Example of Vertical Motion Correlations in the SLAC Linac Tunnel}
 \]

\[
\begin{align*}
\text{Measurement: } & 0.8 < f < 0.9 \text{ Hz} \\
\text{1- } J_0(2\pi \Delta z f/v): & \quad f = 0.85 \text{ Hz, } v = 1510 \text{ m/s}
\end{align*}
\]

Distance Between Two Points, Δz (m)
Sensitivity and Integrated Motion:

For wave-like motion at frequency = f,

\[\Delta L/L \propto \sum_{i,j} g_i g_j J_0(2\pi f \Delta z_{ij}/v) \]

where \(g_i = \) Quad i to IP lattice transfer function

Factor in \{ Trajectory feedback response \} \{ Limits due to STS 2 resolution \} and compute

Sensitivity \(\equiv \) RMS Motion \(\rightarrow \Delta L/L = 1.5 \% \)

Integrated (\(f > .01 \) Hz) luminosity loss:

\[\Delta L/L = 1.5 \% \int P(f)/\text{Sensitivity}^2(f) \, df = 0.13\% \]
Trajectory Feedback Response Functions
with 120 Hz Beam Rate

![Graph showing feedback suppression as a function of frequency with two curves labeled: Exp(-i/6) Weighted and Next Pulse.](image-url)
Example of ATL Motion Simulation

![Graph showing example of ATL motion simulation]

Figure 7-66. Example of ATL-like alignment drifts. The upper plot shows the displacements of quadrupoles, rf-structures and BPMs after 30 minutes with an A-coefficient of $5 \times 10^{-7} \mu m^2/s/m$. The alignment was flat initially. The lower plot shows the corresponding trajectory offsets y_{BPM} at the BPMs. The dotted lines indicate the locations of trajectory feedbacks where y and y' are corrected back to zero. Thus the size of coherent betatron oscillations is constrained.
NLC-IIb Linac Emittance Growth Budget

<table>
<thead>
<tr>
<th>Source</th>
<th>(\approx \frac{\Delta \varepsilon_y}{\varepsilon_y})</th>
<th>Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quad alignment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPM resolution</td>
<td>1 (\mu \text{m})</td>
<td>40% Incoherent Dispersion</td>
</tr>
<tr>
<td>BPM to Quad alignment</td>
<td>2 (\mu \text{m})</td>
<td></td>
</tr>
<tr>
<td>Quad drift between alignment</td>
<td></td>
<td>10% Coherent Dispersion + Wakes</td>
</tr>
<tr>
<td>Steering period</td>
<td>30 min.</td>
<td></td>
</tr>
<tr>
<td>Structure alignment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal alignment</td>
<td>15 (\mu \text{m})</td>
<td>25% Long-Range Wakes</td>
</tr>
<tr>
<td>Beam measurement accuracy</td>
<td>15 (\mu \text{m})</td>
<td>50% Short-Range Wakes</td>
</tr>
<tr>
<td>Other (e.g., quad roll, ion effects, and RF deflections)</td>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>175%</td>
</tr>
</tbody>
</table>