NLC - The Next Linear Collider Project

"Now Bliss is Everywhere..."

Static Tuning Simulations

ISG-8
24 June 2002
K. Bane, L. Hendrickson, Y. Nosochkov, T. Raubenheimer, A. Seryi, G. Stupakov, P. Tenenbaum, A. Wolski, M. Woodley

With additional helpful input from:

R. Assmann, S. Redaelli, D. Schulte, N. Walker
Motivations

• Interest in performing beam tuning simulations on all of LC design
 – historically concentrated on main linac
 – some activity in BDS, BC regions
 – Helpful to have a single “tuning” code for the job

• Seek to study interaction between tuning algorithm and other effects
 – “Does a tuned-up beamline respond to ground motion the same way as a nominally perfect one?”
 – Small beam distortions have big lumi impact – “Banana Instability”
Motivations (2)

• Some problems can only be studied properly with an integrated beamline
 – example: ground motion – actually need 2 beamlines pointing at each other!

• Technical Review Committee (TRC)
 – Luminosity WG, Low-Emittance Transport (LET) sub-WG: considering BC-to-IP performance in unified manner
 – “...members of this group...should set common standards and use common computer codes to predict emittances...” (from the charge)
Historical Note:

SAD FFTB study from 1989 -- K. Oide

Same general idea -- all errors included, tuning simulated
The Codes Issue

- Codes typically used for LC work @ SLAC:
 - LIAR
 - Designed for simulation of tuning & errors
 - Can’t handle bunch compression, sextupoles, or higher multipoles
 - DIMAD
 - Good at high-order optics, includes bunch compression
 - Poor linear accelerator code (no transverse wakes), poor for tuning simulations
 - GUINEAPIG
 - Commonly-used beam-beam code
 - doesn’t do any other beam dynamics!
The Grand Synthesis

- **Assimilate DIMAD tracking engine into LIAR**
 - use DIMAD for bunch compressor bends, beam delivery
 - use LIAR for BC RF, linacs
 - “seamless integration”

- **Use GUINEAPIG to compute luminosity from LIAR/DIMAD runs**

- **Run everything under MATLAB**
 - take advantage of MATLAB graphics, scripting, etc.
 - “LIAR is the accelerator and MATLAB is the control system”
NLC - The Next Linear Collider Project

The Grand Synthesis -- Example

- NLC run – DR exit to IP

- Uses LIAR with DIMAD tracking options
 - Bunch is compressed
 - R_{56} properly represented
 - Energy spread is right
 - wakefields properly handled
 - Beam sizes are right
 - chromatic correction works
Single-Bunch Static Tuning: Plans

- Complete first iteration of region-by-region algorithm tests
 - compare results to NLC Emittance Budget
 - Iterate as needed
- Assemble “end to end” tuning simulation
 - concatenate regional tuning sims, with appropriate adjustments

- Test-drive the TESLA tuning algorithms

- Compare NLC and TESLA tuning sims with same by other TRC Members / Codes
A Few Words on TRC’ing

- **TESLA, NLC, CLIC groups** working feverishly to perform tuning studies
 - some more feverishly than others

- **First step: tune up the linac**
 - realistic and documented initial errors
 - documented instrumentation performance
 - documented algorithms

- **Nobody is there yet!**
 - **NLC:** Tuning 250 GeV/beam linac to “LTB” point, got \(<\Delta\gamma\varepsilon_y>\) ~ 21% w/o emittance bumps!
 - **TESLA:** tuning 250 GeV/beam linac to end, got \(<\Delta\gamma\varepsilon_y>\) ~ 70% w/o emittance bumps
What is the “NLC Linac?”

- 7.87 GeV \rightarrow 250.0 GeV acceleration
- 6 km bypass line + injection/extraction
 - “full-length tunnel, half full of structures”
- Diagnostic section ("EBSY", technically considered part of BDS)
 - contains end-line wire scanners – very useful!
“Realistic” Errors

- **Quads**
 - 0.25% RMS strength
 - 200 urad RMS roll
 - 150 x 50 um RMS offset from survey line

- **Structures**
 - 25 um RMS y offset
 - 33 urad RMS pitch
 - x errors = 3 \times y errors

- **Girders**
 - 50 um RMS y offset
 - 15 urad RMS pitch
 - x errors = 3 \times y errors

- **Q-BPMs**
 - resolution: 0.4 um for 0.75x1010, linac-style Q-BPMs
 - scales with BPM aperture
 - 5-25 um offset to quad center (EM or PM)

- **S-BPMs**
 - 5 um resolution

- **Sexts**
 - 150 x 50 um offsets
 - 0.7% strength
 - 200 urad tilt
 - 15 um center position uncertainty
Tuning the Linac

- **Techniques:** mover steer to zero BPMs, then DF steering
 - vary linac energy gain
 - do all variation upstream of region to be DF steered – steered region is at nominal conditions (except for incoming beam energy)
 - Tested on 1st half linac only (accelerating half)

- **Got down to** $<\Delta \gamma \varepsilon_y> \sim 21\%$ w/o emittance bumps!
• **TESLA also requires BBA in main linac**
• **Sensitive to:**
 - beam-to-quad offsets
 - structure tilts
 - structure offsets
• **Using “every trick in the book,” got to**\(<\Delta \gamma \varepsilon_y> \sim 97\% \)
• **Simple bumps not helpful (odd...)**
TRC: Next Steps

- **NLC**: complete linac tuning
 - tune LTB, bypass, BTL, EBSY lines
 - include emittance bumps

- **TESLA**: understand poor results