! 3D adjusted parameters (b's)

<table>
<thead>
<tr>
<th></th>
<th>dF_0/dP</th>
<th></th>
<th>dF_1/dP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>t</td>
<td>a</td>
</tr>
<tr>
<td>001</td>
<td>0.643</td>
<td>-1.211</td>
<td>0.259</td>
<td>-0.670</td>
</tr>
<tr>
<td>052</td>
<td>0.578</td>
<td>-1.214</td>
<td>0.295</td>
<td>-0.692</td>
</tr>
<tr>
<td>102</td>
<td>0.548</td>
<td>-1.215</td>
<td>0.308</td>
<td>-0.709</td>
</tr>
<tr>
<td>153</td>
<td>0.518</td>
<td>-1.215</td>
<td>0.320</td>
<td>-0.727</td>
</tr>
<tr>
<td>203</td>
<td>0.454</td>
<td>-1.212</td>
<td>0.343</td>
<td>-0.776</td>
</tr>
</tbody>
</table>
X-Band RDS(c) Parameter Sensitivity

\[
\frac{dF_0}{dP} \text{ (MHz}/\mu) \\
\frac{dF_1}{dP} \text{ (MHz}/\mu)
\]

cell

\[
\begin{align*}
&dF_0/dA \\
&dF_0/db \\
&dF_0/dT \\
&dF_0/dA1 \\
&dF_1/dA \\
&dF_1/db \\
&dF_1/dT \\
&dF_1/dA1
\end{align*}
\]
X-Band RDS(c) (A) Parameter Definitions

Δa

Δa1

Δb

Δt
X-Band RDS(c) AF Weighting Function (C001)

\[w^2 = \omega_0^2 (1 + W \Delta S \Delta d) \]
- Positive Ad : Pushed IN

![Graph showing the X-Band RDS(c) AF Weighting Function with various curves labeled as r*5.e6, h, e, M=0, and M=1. The graph has a horizontal axis labeled S (m) ranging from 0 to 0.02, and a vertical axis ranging from -150000 to 150000. The graph includes a curve labeled S and another labeled r.](https://afs/slac.stanford.edu/u/ap/lizh/nlc/rds/dds-c/3d-adjust-df-weight/c001/fields2.gle)
X-Band RDS(c) AF Weighting Function (C102)

- $r^2 = \omega_0^2 (1 + \Delta S \Delta d)$
- Positive Ad: Pushed IN
X-Band RDS(c) AF Weighting Function (C203)

- $\omega^2 = \omega_0^2 (1 + W \Delta S \Delta d)$
- Positive Ad : Pushed

![Graph showing the relationship between W and S(m) for different M values.

 afs/slac.stanford.edu/u/ap/lizh/nlc/rds/dds-c/3d-adjust-df-weight/c203/fields2.gle