Accelerator Test Facility – KEK/ATF

Prototype injector for JLC/NLC

ATF is the only test facility with ~NLC emittance

ATF Report

- Single bunch emittance results
 - Evidence for intra-beam scattering
- Emittance measurements
- Single bunch study plans
- Instrumentation RD at ATF
- Multi bunch plans
KEKの敷地内に運転中のJLCのための試験加速器

Emittance

- NLC spec: $\gamma \epsilon_x = 3 \times 10^{-6}$ m-rad, $\gamma \epsilon_y = 3 \times 10^{-8}$ m-rad
- ATF achieved: 5×10^{-6}, 6×10^{-8} (NLC: $1.98 \text{ GeV}; 8 \times 10^9$)

- Single bunch: 1.28 GeV; 1×10 ppb

• What are important emittance effects?
 - ring dispersion / coupling correction
 - intra-beam scattering
 - extraction line optical aberration correction
 - instrument validity
Collective effects – single bunch

- cause either coherent instability or incoherent emittance growth
 - Potential well distortion
 - “Microwave” instability
 - serious problem at SLC
 - worse with ‘strong’ but still a problem with ‘weak’
 - definite threshold observed
 - Intra-beam scattering
 - Key topic of ATF work
 - more studied at proton machines
 - important single bunch emittance driver for NLC
 - no threshold: dependence on bunch volume

Intra-beam scattering

- Similar to synchrotron radiation
 - growth rate = damping rate at equilibrium
 - collisions involve energy exchange between particles
 - beam temperature in rest frame: 7000:35:1 (x, y, z)
 - SR from bends only; IBS everywhere
 - \(\langle H \rangle_{\text{bends}} = 1.6 = \frac{(\varepsilon - \varepsilon_{x0})/\varepsilon_{x0}}{(\varepsilon - \varepsilon_{y0})/\varepsilon_{y0}} \) (at ATF)
 - (for emittance generated through residual dispersion vv coupling)
 - \(H \) is the dispersion invariant \(H = \left[\eta^2 + (\beta \eta' + \alpha \eta)^2 \right] / \beta \)
Intra-beam scattering – theory

- Small transfer approx. of Touschek lifetime
 - Limitation in SR sources
- Bjorken & Mtingwa + Piwinski
 - $x - y$ coupling and microwave related σ_z distortion not included in most simulations
- Magnitude
 - Overall scale factor usually used (protons…, ALS)
- Tail generation – (should be important for downstream users)
 - Cut-off parameter introduced
 - Reduces computed ‘rms’ emittance by 30%

\[\frac{\langle H \rangle_{\text{bands}}}{\langle H \rangle} = 1.6 @ \text{ATF} \]
\[\frac{\langle H \rangle_{\text{bands}}}{\langle H \rangle} = 0.64 @ \text{NLC} \]
Evidence for IBS – vertical coupling into σ_E

- Vertical still large – no effect on x and E
- Vertical damped – increase in x and E
- minimum at 70ms

Simulation consistent when coupling $\frac{\varepsilon_y}{\varepsilon_x} = 0.005$

Energy spread

- Zero current energy spread $\sim 5.5e^{-4}$ is close to expected.

$\frac{\varepsilon_y}{\varepsilon_x} \leq 0.002$
Energy spread on/off difference coupling resonance – showing IBS effect

Energy spread in extraction line on/off coupling resonance

Emittance vs intensity

- Extraction line wire scanner emittance
- Simulation uses zero current ε_x

$\frac{\varepsilon_y}{\varepsilon_x} \leq 0.002$
Emittance results

- Growth ratio is well measured
- ε_y is poorly understood
- Observed energy spread/horizontal emittance growth indicates a 6x smaller vertical emittance than observed

Table of emittance measurements: (e^{-9}/e^{-11} x/y; not normalized)

<table>
<thead>
<tr>
<th></th>
<th>e_x</th>
<th>e_y</th>
<th>e_{y0}</th>
<th>e_y</th>
<th>e_{x0}</th>
</tr>
</thead>
<tbody>
<tr>
<td>extracted wires 4/00</td>
<td>1</td>
<td>1.85</td>
<td>1</td>
<td>3</td>
<td>2.35</td>
</tr>
<tr>
<td>extracted Dec-00</td>
<td>1.1</td>
<td>2.2</td>
<td>1.7</td>
<td>4</td>
<td>1.35</td>
</tr>
<tr>
<td>extracted Feb-01</td>
<td>1.1</td>
<td>2.2</td>
<td>0.7</td>
<td>2.8</td>
<td>3.00</td>
</tr>
<tr>
<td>extracted Apr-01</td>
<td>1</td>
<td>2.4</td>
<td>1.2</td>
<td>2.5</td>
<td>0.77</td>
</tr>
<tr>
<td>ring L wire</td>
<td>1.1</td>
<td>2.2</td>
<td>0.7</td>
<td>1.9</td>
<td>1.71</td>
</tr>
</tbody>
</table>

- measurements made 4/00 to 4/01
- IBS: $1 < r < 1.6$

$$r = \frac{(\varepsilon_x - \varepsilon_x^0)}{\varepsilon_{x0}} \frac{(\varepsilon_y - \varepsilon_y^0)}{\varepsilon_{y0}}$$

Constraints on measurement/optical errors from estimate of r

- for example – a coupled mixture as would be generated by a skew quad
 \[\varepsilon_{y\text{meas}} = \varepsilon_{y\text{real}} + k\varepsilon_x \] \((k \text{ independent of } I) \)

- \rightarrow only makes sense if:
 \[\frac{\varepsilon_y}{\varepsilon_{y0}} < \frac{\varepsilon_x}{\varepsilon_{x0}} \]

- not so for 00/01 data
Orbit correction/emittance optimization

Simulated vertical emittance after each correction

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th><1.1E-11 rad-m</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>2.28</td>
<td>20 %</td>
</tr>
<tr>
<td>(E-11 rad-m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V COD-dispersion</td>
<td>1.67</td>
<td>51 %</td>
</tr>
<tr>
<td>Coupling</td>
<td>0.58</td>
<td>91 %</td>
</tr>
</tbody>
</table>

Misalignment: as measured
+ random 30 micron offset
+ random 0.3 mrad. rotation
BPM error: offset 300 micron, rotation 0.02 rad.

Ring orbits

- Raw BPM readings
- Energy spread measurement an excellent practical indicator of convergence

\[\eta_{\text{rms}} \approx 3\text{mm} \]
Summary – single bunch
low emittance

- relative growth not explained by aberrations in extraction line
- ring simulation indicates unreasonably small vertical emittance
- ring tuning relies on poorly optimized BPM system
- simulation input somewhat unrealistic

- Plans:
 - complete ring beam based alignment
 - BPM system improvements
 - extraction line (RF dipole mode BPM’s)
 - ring

Single bunch study plans

- ZDR prediction for 2 GeV: ~ 20% growth at 1e10
 - What is the impact of the ATF result on the NLC damping ring design?
- ϵ_{yo} is too high
 - coupling and dispersion correction
 - BPM resolution and beam based alignment
 - understanding of low intensity, low emittance instrument resolution
Emittance measurements

- wire scanners - in the extraction line…
 - few micron beam size resolution
 - 2-3 micron beam jitter
 - control of eta to few mm
- laserwire – in the ring…
- energy spread – extraction line optics
- SR monitor (results not included)

Synchrotron radiation interferometer

- measure depth of 2 slit modulation vs slit spacing
- 6.2 um
- $\varepsilon_y \sim 1.6 \times 10^{-11}$
- beats diffraction limit by ~ 6x
Ring Laserwire monitor

- Resonant cavity close to focus cut-off
 - uses CW laser
 - cavity gain 300
 - measurement ~ 1 hour

![Graph showing signal counting rate vs. laser wire vertical position](image)

Development of a transition radiation profile monitor - OTR

- some controversy over minimum resolvable beam image
 - achieved 7μm (12/00) well beyond purported limit
 - smallest OTR spot imaged to date
- theoretical limit: \(~\lambda\)

- Parameters for ATF OTR (built at SLAC)
 - resolution – 2μm
 - field of view – 300 x 200 um (or ~2x)
 - depth of field – 8 um vertical displacement
 - OK light for normal camera – 5e9 ppb
- Instrumentation RD
Multi-bunch operation

- 20 bunches; typical single bunch Imax ~ 2.5e9 (4x lower than single bunch)
- ε_y increases 1.5x from 1st to 20th bunch (10e-8 normalized avg.)
- Vacuum system to be improved 2001
ATF Operation

- ATF operates 20 weeks/year for a 4 1/3 day block /week
 - ~ 2 wks on/ 2 wks off (end effects are large)
- Users (~ students) get about 1/4 time
 - Effective uptime ~ 55 days/year
- Stability is critical for ~10 pm emittance
- Typical beam sizes are 50 x 8 μm
- BPM resolution single shot is ~15 μm
- Beam pulse rate is 1.5 Hz

- Precise measurements require long periods of checking/setup

ATF Plans

- Operation is limited by funds (KEK) and manpower (KEK)
 - ~10 physicists (6 FTE) + 8 grad. students.
 - SLAC participation began 1997
 - 1 FTE average by ~ 8 SLAC staff
 - ~100K$
 - Contributions from Japanese universities and BINP/Protvino
 - Minimal involvement from other labs

ATF is the only LC test facility with capability for transverse beam dynamics studies
- collective effects, tolerances, optimization, control, stability, technology

5/17/01 NLC MAC ATF Report - Marc Ross 25

5/17/01 NLC MAC ATF Report - Marc Ross 26