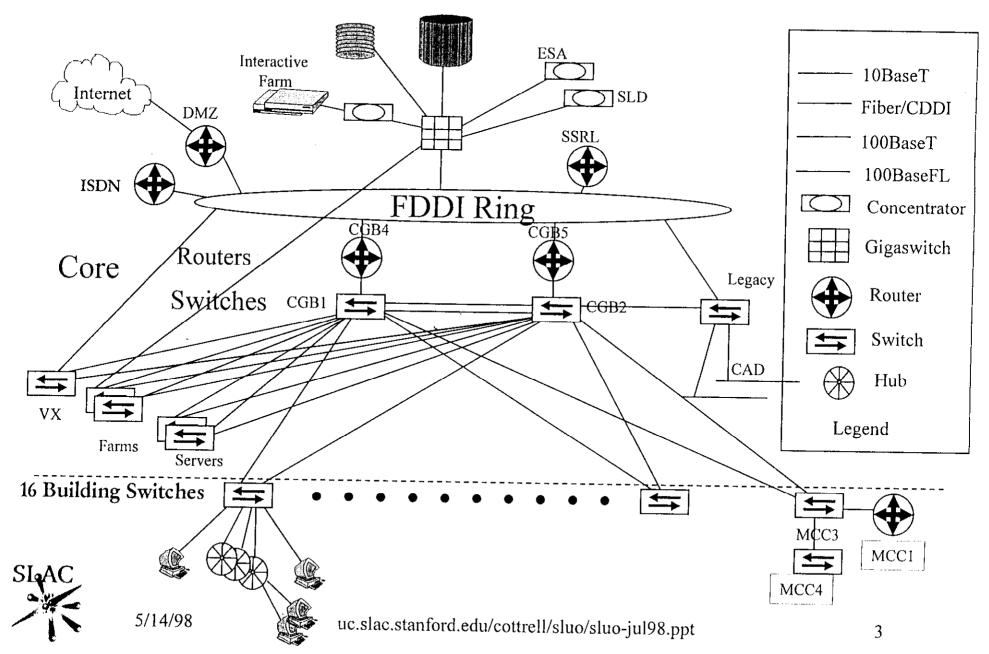
R. Les Cottrell	<cottrell@slac.stanford.edu></cottrell@slac.stanford.edu>	Stanford Linear Accelerator Center (SLAC)	Presented at SL UOA musal Meeting, Jul-15, 1998	<pre>www.slac.stanford.edu/grp/scs/net/talk/sluo-jul98/</pre>	5/14/98 uc.slac.stanford.edu/cottrell/sluo/sluo-jul98.ppt
	R. Les Cottrell	R. Les Cottrell <pre></pre>	R. Les Cottrell <pre></pre>	R. Les Cottrell <pre></pre>	R. Les Cottrell Cottrell@slac.stanford.edu > Stanford Linear Accelerator Center (SLAC) Presented at SLUOA mud Meeting Jul-15,1998 www.slac.stanford.edu/grp/scs/net/talk/sluo-jul98/

¢

+ SLAC's LAN

◆ Dial in access


WAN connectivity & performance

5/14/98

uc.slac.stanford.edu/cottrell/sluo/sluo-jul98.ppt

LAN - Topology - Jul98

 LAN -Status of Structured Wiring
 Imdividual cables with twisted copper wires between desktop & closet. Building closets connect to computer center by fiber

- + Move started in 1995
 - Improved management & error isolation
 - Improved installation time
 - Enables switched networking
- About 70% of site completed (i.e. on switches or hubs)

+ Plan to complete outside radiation fence in FY99.

LAN - Switched Network

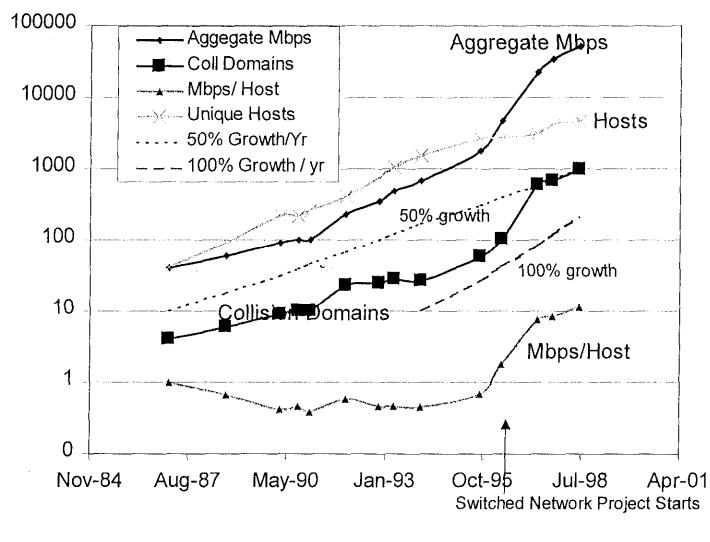
- ✦ Based on mass market switched Ethernet
- Standard desktop has 10Mbps shared (via hub)
- Hubs connect to 10Mbps Building switch port
- + Building switch connects to core switch at 100Mbps
- + Core switches are interconnected at 100Mbps
- ✦ Core switches connected to core routers at 100Mbps
- ✦ Main servers connect via dedicated 100Mbps

5/14/98

✦ Use VLANs to provide instances of given subnets
 ▲ across many buildings

LAN - Reliability

- Redundant links with automatic failover to reduce impact of scheduled outages and improve reliability
- ✦ UPS for reliability
- Segmentation reduces impact of failure & simplifies id



LAN - Services Highlights LAN - Services Highlights users, 27K msgs/day, notebook volume growing o/ year o/ year fed new mail gateway red new mail gateway P server, evaluating clients M blocking (1830 blocks, fairly stable)	relieved of entering IP addr/Gwy/DNS/WINS ort static & dynamic (e.g. roaming laptops) admins can quickly register machines via form	38 uc.slac.stanford.edu/cottrell/sluo/sluo-jul98.ppt 7
---	---	--

The LAN - Growth

/uc.slac.stanford.edu/cottrell/slac/lanutil

Growth of SLAC LAN

LAN - Next Steps

- ✦ Double aggregate bandwidth ~ every 12-18 months
 - more segmentation (hubs => switched ports, 1 host/collision domain)
- ✦ Dedicated 100Mbps Ethernet to power user desktops
- + Gbps trunks between switches & core routers
- ✦ Replace FDDI rings with high speed switched core
- Higher speed routing & more integrated with switching
- Increase UPS & MG backup

Dial-in

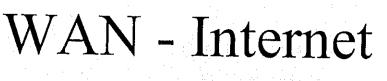
Wireless thru Ricochet

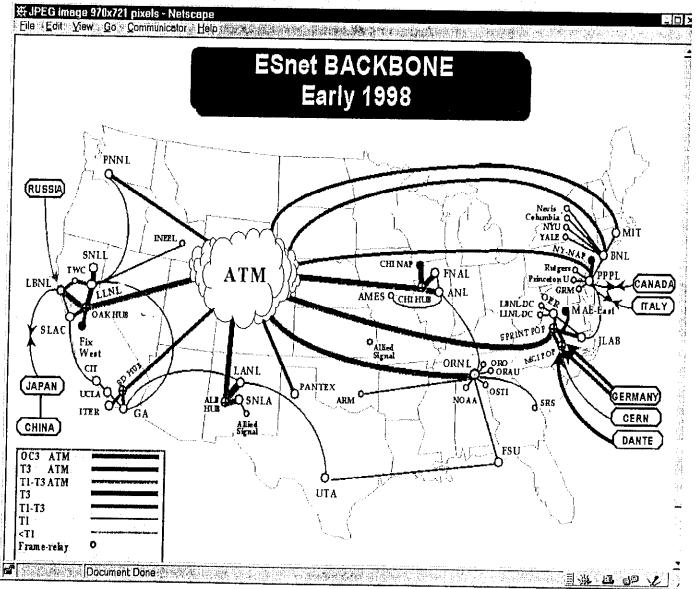
a the second second

- ->60 users, production for ~ 9 months
- typical day 40 different users, 20 simultaneous,
 3hrs/user/day
- high degree of satisfaction
- startup more expensive than modems
- + Voice modem

5/14/98

- through campus 14.4kbps getting rusty
- ISP (e.g. Netcom \$20/month) nationwide
- SI_{AC} ARA 33.6kbps ~ 340 accounts getting rusty


Dial in - Futures


- Disappointed with outsourcing dial-in
- ✦ Plan for direct dial-in PPP at < 56kbps</p>
 - ready for pilot users
 - www2.slac.stanford.edu/comp/net/ppp/
- ✦ Further out:
 - Have a few users on xDSL thru Stanford
 - higher speeds, leased line, double ISDN cost
 - Couple of users trying cable modems

★ ESnet
 - 45Mps to
 Sprint
 -=>155Mbps

Stanford10Mbps

WAN - Performance Environment

- Most European & Japan traffic carried via national A&R nets
- Most US traffic carried by ESnet or Internet MCI
- At least 20 different transatlantic routes with own financial arrangements, packet loss and performance
- + Cost of bandwidth varies, US one of cheapest
- HENP only small part of traffic carried
- \bigstar In most cases no there is priority for HENP

WAN - HENP Use

- + ICFA estimates factor 10 traffic growth in 4 years
- + HENP (SLAC & CERN) profile different from typical Internet traffic:
 - $-\sim 20-60\%$ traffic is data transfer
 - Web 15-40% (c.f. Internet 70%)
 - AFS 6-8%
 - Xwindows \sim 5-10%
 - Remainder mainly Telnet/rlogin, plus email, news, video

WAN - Performance Monitoring

- Internet woefully under-measured, starting to improve. No single path typical of whole
- ✦ World-wide HENP participation in measurements
- Set of tools known as PingER, originally developed at SLAC, based on echoing packets
- 15 Esnet/HENP sites in 8 countries monitoring over
 900 links in 22 countries
- Data going back years
- Recently defined 50 "beacon sites" that all sites
 SLAMONITOR
 5/14/98 uc.slac.stanford.edu/cottrell/sluo/sluo-jul98.ppt

WAN - Performance Metrics

- ✦ Packet loss identified as critical quality indicator
 - below 1% smooth performance
 - -> 2.5-5% interactive (telnet, Xwindows, packet video ...) work becomes problematic
 - ->12% interactive unusable
- ✦ Fortunately Email & Web not so sensitive

WAN Performance - US <=> US 1/2

- + Within ESnet excellent (median loss 0.1%)
- ★ To vBNS/I2 sites very good (~ 2 * loss for ESnet)
- DOE funded Universities not on vBNS/ESnet
 - acceptable to poor, getting better (factor 2 in 6 months)
 - lot of variability (e.g.)

5/14/98

• Brown^T, UMass^T = unacceptable($\geq 12\%$)

 ◆ Pitt*, SC*. ColoState*, UNM^T, UOregon^T, Rochester*, UC*, OleMiss*, Harvard^{1q98}, UWashington^T, UNM^T= v. poor(> 5%)

• Syracuse^T, Purdue^T, Hawaii^{*} = poor (>= 2.5%)

- * = no vBNS plans, ^T = vBNS date TBD, ^V = on vBNS

WAN - Performance - US <=> US 2/2

- A year ago we looked at Universities with large DOE programs
- Identified ones with poor (>2.5%) or worse (>5%)
 performance
 - Harvard^{1q98} = very poor (>= 5%)
 - JHU^V, UOregon^{*}, Duke^V, UCSD^V, UMD^V, UMich^T, UColo^V, UPenn^T, UMN^V, UCI^T, UWashington^T, UWisc^V = acceptable (>1%)/good

$$|* = no vBNS plans, T = vBNS date TBD, V = on vBNS$$

WAN - Performance - Canada

- 4 23 of 50 major universities connected to CA*net2 (incl. 8 of 10 HENP major sites)
- + Seems to depend most on the remote site
 - UToronto bad to everyone
 - Carleton, Laurentian, McGill poor
 - Montreal, UVic acceptable/good
 - TRIUMF good with ESnet, poor to CERN

WAN - Performance - Europe

+ Divides up into 2

- TEN-34 backbone sites (de, uk, nl, ch, fr, it, at)
 - within Europe good performance
 - from ESnet good to acceptable, except nl, fr (Renater) & .uk are bad
- Others
 - within Europe performance poor
 - from ESnet bad to: be, es, il, hu, pl acceptable for cz

WAN Performance - Asia

rael bad

EK & Osaka good from US, very poor from anada

pan-CERN/Italy acceptable, Japan-DESY bad 3U bad to Moscow, acceptable to Novosibirsk okyo poor from US

nina is bad with everywhere

WAN Performance - Intercontinental

Monitoring Contine	ent 🖌 Remote	Continent 👻			
Ping Loss History		Jun98 🚼 Subr	nit		
This report can a for use with Exc	also be provid el	ded in <u>tab-sepa</u>	rated-value (<u>(.tsv)</u> forma	at
WORLD	West Europe	• <u>North</u> America	• <u>East</u> Europe	• <u>Asia</u>	1
West Europe	0.69 🔊	6.29 🔹	10.96	9.84 🔺	
North America	<u>3.79 × 1</u>			5.17 •	
East Europe	<u>6.67</u> •	11.59 *	11.68 *	11.46 •	
<u>Asia</u>	<u>7.20 × </u>	8.60 •	<i>i.</i> 7:	8.29	
South Pacific	<u>9.45 s</u>	8.60 🗚	÷	8.91	
South America	· 🚑				
Docume	ent Done			」 「」 「」	

Looks pretty bad for intercontinental use

roving (about factor of 2 in last 6 months) 5/14/98

uc.slac.stanford.edu/cottrell/sluo/sluo-jul98.ppt

WAN - Performance - Summary

- Performance worse when source & destination on different ISPs, nets need to interconnect
- + Some interconnects are very bad
 - e.g. MAE-West, MAE-East, but changes with time
 - Private peering to avoid congestion points
- Transatlantic important & bad

WAN - Performance Futures

- ✦ Increased bandwidth
 - WDM (factor 4-16 today, going to 100)
 - Competition to traditional carriers (e.g. Qwest)
 - Intra continent

5/14/98

- US: More sites on I2, second I2 backbone (Abilene)
- Europe TEN-34 \Rightarrow TEN-155
- Inter continent more problematic
- Differentiated services: policy tag packets and prioritize through Internet (premium class service)
- Improved understanding: increased measurement of end-to-end performance & identifying bottlenecks

Further Information

✦ DHCP at SLAC

SLAC

5/14/98

- www2.slac.stanford.edu/comp/net/dhcp/dhcp.htm
- ✦ Direct dial-up PPP pilot at SLAC
 - www2/comp/net/ppp/
- Email: www/comp/net/email/
- ICFA Monitoring WG home page (links to status report, meeting notes, how to access data, and code)

- www/xorg/icfa/ntf/home.html

+ WAN Monitoring at SLAC has lots of links

- www/comp/net/wan-mon.html