Parameters of Future Rings

John Corlett
Accelerator and Fusion Research Division
LBNL
Future Rings

- Greater demands on performance of present and future accelerators
 - Lower emittance
 - Higher current
 - Shorter bunches
 - Top-up mode
 - Bunch trains (gaps)
 - Reduced damping time

- All tend to push limits of beam stability
 - Single-bunch
 - Multi-bunch
Synchrotron Light Sources

- Existing 3rd generation light sources
 - ALS, NSLS, ESRF, ELETTRA, APS, …..

- New light sources
 - DIAMOND, SOLEIL, SSRF, ….

Damping rings for linear colliders

- NLC, TESLA, CLIC
 - Similar to 3rd generation light sources
 - Pushing some parameters
Comparison of ring parameters

<table>
<thead>
<tr>
<th></th>
<th>ALS</th>
<th>ELETTRA</th>
<th>SRF C</th>
<th>NSLS-ωv</th>
<th>SLS</th>
<th>ATC</th>
<th>SLH</th>
<th>DML-ODN</th>
<th>SSRF</th>
<th>NLC</th>
<th>CLC</th>
<th>TEBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GeV)</td>
<td>1.5</td>
<td>2</td>
<td>1.5</td>
<td>0.808</td>
<td>2.4</td>
<td>1.54</td>
<td>2.5</td>
<td>3</td>
<td>3.5</td>
<td>1.98</td>
<td>1.98</td>
<td>5</td>
</tr>
<tr>
<td>Momentum compaction</td>
<td>1.00E-03</td>
<td>1.43</td>
<td>1.59</td>
<td>6.78</td>
<td>23.5</td>
<td>0.7</td>
<td>1.93</td>
<td>0.472</td>
<td>8.43</td>
<td>0.71</td>
<td>0.66</td>
<td>0.28</td>
</tr>
<tr>
<td>Energy spread (%)</td>
<td>0.08</td>
<td>0.08</td>
<td>0.075</td>
<td>0.05</td>
<td>0.09</td>
<td>0.072</td>
<td>0.0924</td>
<td>0.0923</td>
<td>0.09</td>
<td>0.078</td>
<td>0.078</td>
<td>0.13</td>
</tr>
<tr>
<td>Bunch length (ns)</td>
<td>12</td>
<td>18.7</td>
<td>30</td>
<td>170</td>
<td>13.3</td>
<td>16.7</td>
<td>11.67</td>
<td>16.2</td>
<td>12.7</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>X/Y damping time (ms)</td>
<td>1.20E-06</td>
<td>2.70E-06</td>
<td>6.28E-06</td>
<td>2.14E-06</td>
<td>2.07E-06</td>
<td>4.30E-06</td>
<td>1.47E-06</td>
<td>8.39E-06</td>
<td>8.15E-06</td>
<td>3.01E-06</td>
<td>1.50E-06</td>
<td>8.00E-06</td>
</tr>
<tr>
<td>Normalized X emittance (m rad)</td>
<td>1.20E-05</td>
<td>2.70E-05</td>
<td>6.28E-05</td>
<td>2.14E-05</td>
<td>2.07E-05</td>
<td>4.30E-05</td>
<td>1.47E-05</td>
<td>8.39E-05</td>
<td>8.15E-05</td>
<td>3.01E-05</td>
<td>1.50E-05</td>
<td>8.00E-05</td>
</tr>
<tr>
<td>Normalized Y emittance (m rad)</td>
<td>1.20E-07</td>
<td>2.20E-07</td>
<td>1.25E-06</td>
<td>4.63E-07</td>
<td>3.01E-06</td>
<td>2.00E-06</td>
<td>5.00E-07</td>
<td>3.00E-07</td>
<td>3.00E-07</td>
<td>5.00E-07</td>
<td>2.00E-07</td>
<td></td>
</tr>
<tr>
<td>X / Y damping time (ms)</td>
<td>17</td>
<td>13</td>
<td>4.9/9.4</td>
<td>14</td>
<td>10</td>
<td>6.8/9.1</td>
<td>8.73</td>
<td>7.17/7.14</td>
<td>5.2</td>
<td>8.3</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Longitudinal damping time (ms)</td>
<td>80</td>
<td>5.7</td>
<td>7</td>
<td>5</td>
<td>5.5</td>
<td>4.35</td>
<td>3.56</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of bunches per train</td>
<td>320</td>
<td>388</td>
<td>150</td>
<td>7</td>
<td>10</td>
<td>396</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>0.667</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Bunch length (ns)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2.8/5.6</td>
<td>2.84</td>
<td>2</td>
<td>2.8</td>
<td>0.667</td>
<td>2.8</td>
<td>0.667</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Single bunch current (mA)</td>
<td>400</td>
<td>320</td>
<td>200</td>
<td>1000</td>
<td>400</td>
<td>600</td>
<td>500</td>
<td>300</td>
<td>300</td>
<td>800</td>
<td>820</td>
<td></td>
</tr>
<tr>
<td>Bunches per bunch</td>
<td>5.00E+09</td>
<td>1.60E+10</td>
<td>4.20E+09</td>
<td>2.00E+10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam pipe radius (cm)</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>1.2</td>
<td>1.25</td>
<td>1</td>
<td>2.3</td>
<td>1.6</td>
<td>2.3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Existing machines

Proposed light sources

Proposed damping rings
Instabilities in rings

♦ Coupled-bunch motion
 ◊ Bunch-to-bunch energy spread
 → Broaden undulator harmonics
 → Energy spread in extracted bunch trains
 ◊ Movement of source point
 ◊ Increase in beamsize
 ◊ Beam loss

> Damp resonances
 ⇒ Cavities, BPM’s, septa, kicker magnets, …

> Feedback systems
 ⇒ Control residual motion
Instabilities in rings

♦ Single-bunch effects
 ◊ Increase in beamsize (transverse and longitudinal)
 → Instabilities
 > Impedance driven, two-beam driven
 → IBS
 ◊ Beam loss
 ◊ “Bursting” phenomena particularly difficult
 → SLC - “sawtooth”, NSLS - coherent radiation bursts
 > Severe consequences downstream of damping rings

◊ Requires very careful vacuum chamber design
 > Reduce short-range wakefields
 ⇒ Understand wakefield / impedance model
 ⇒ Understand instability models
Emittance requirements

♦ Light sources
 ◊ High brightness radiation beams
 → $\gamma_{x} \sim 10 \mu \text{mrad}, \gamma_{y} \sim 100 \text{nmrad}$

♦ Damping rings
 ◊ High luminosity collisions
 → $\gamma_{x} \sim 1 \mu \text{mrad}, \gamma_{y} \sim 10 \text{nmrad}$
 ◊ Extracted beam emittance
 → Evolves from the injected beam emittance, and the natural equilibrium emittance

$$\varepsilon_{\text{extracted}} = \varepsilon_{\text{injected}}e^{-2N_{\tau}t} + \varepsilon_{\text{equilibrium}}(1 - e^{-2N_{\tau}t})$$

♦ Small beams
♦ Small vacuum chambers
♦ Strong short-range wake
♦ High cut-off frequency

♦ Positron beam requires pre-damping ring
 → Large emittance from target
Ring Parameters

- Luminosity determined by repetition rate of bunch trains
- Damping time determined by required rep rate, # trains, store time per train
 \[\tau \frac{\hat{S}}{f_{\text{rep}}} \frac{1}{N_{\text{train}}} \frac{N_{\tau}}{N} \]
 - Three orders magnitude reduction in vertical emittance
- Need \(E > 2.8 \) GeV with iron magnets
 - Expensive
 - Increase damping rate using wiggler
 \[\tau = \frac{2.88 \times 10^{12} T_{\text{orbit}}}{B_0 \gamma^2} \]
- Long, narrow gap insertion device
 - Limiting aperture
 - Increases short-range wakefield
Ring Parameters

♦ Energy
 ◇ Adequate damping at minimal cost
 ◇ Preserve spin polarization
 → Spin-tune is half-integer
 ◇ " 2 GeV

E = \left(n + \frac{1}{2} \right) 440 \text{ MeV}

♦ Bunch trains
 ◇ Continuous injection / extraction
 ◇ Requires very stable and fast injection / extraction kickers
 → Sets machine circumference

♦ Intra-beam scattering
♦ Instability thresholds

♦ Transients excite all bunch trains in machine
♦ Phase transient along bunch train
Ring Parameters

♦ Small momentum compaction
 ◇ Sensitivity to orbit changes
 → Increase RF voltage to maintain short bunches
 ◇ Incorporate chicane to control circumference ± few mm
 → Wiggler on / off
 → Other effects
 ♦ Decreases instability thresholds

♦ Bunch length
 ◇ Short
 → Maintain peak current below instability thresholds
 → Avoid excessive intra-beam scattering
 > Harmonic cavities
 ⇒ Light sources
 ⇒ CLIC
 ♦ Short bunch - lower instability thresholds
NLC

♦ Consists of:
 ◇ e+ source and polarized e- source to produce high-current bunch trains
 ◇ damping rings for small emittances
 ◇ bunch compressors for short bunches
 ◇ X-band linacs to attain high gradient acceleration for high energy
 ◇ collimation section to remove large amplitude particles
 ◇ final focus for small spots
 ◇ two IPs for alternate experiments
NLC Damping Rings Complex

- Reduce emittance of low-energy $e^+ e^-$
- Stable platform for injection into linacs
 - Similar to 3rd generation light sources

<table>
<thead>
<tr>
<th></th>
<th>Pre-damping ring</th>
<th>Main damping rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GeV)</td>
<td>1.9 – 2.1</td>
<td>1.9 – 2.1</td>
</tr>
<tr>
<td>Circumference (cm)</td>
<td>214</td>
<td>297</td>
</tr>
<tr>
<td>Bunch spacing (mm)</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Fill pattern</td>
<td>2 trains / 95 bunches</td>
<td>2 trains / 95 bunches</td>
</tr>
<tr>
<td>Damping time (ms)</td>
<td>< 5.21</td>
<td>< 5.21</td>
</tr>
<tr>
<td>N_{max}/bunch</td>
<td>1.9×10^{10}</td>
<td>1.6×10^{10}</td>
</tr>
<tr>
<td>Current (mA)</td>
<td>800</td>
<td>750</td>
</tr>
<tr>
<td>Injected emittance X/Y (m-rad)</td>
<td>< 9×10^{-2}</td>
<td>< 150×10^{-6} (rms)</td>
</tr>
<tr>
<td>Extracted emittance X/Y (m-rad)</td>
<td>< 1×10^{-4}</td>
<td>< $3 \times 10^{-6} / 0.03 \times 10^{-6}$</td>
</tr>
<tr>
<td>RF Voltage (MV)</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>Momentum compaction</td>
<td>0.0051</td>
<td>0.0066</td>
</tr>
<tr>
<td>Energy spread (%)</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Bunch length (mm)</td>
<td>8.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Wiggler field (T)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Synchrotron radiation power per section (kW)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Vacuum pressure (Torr)</td>
<td>1×10^{-9}</td>
<td>1×10^{-9}</td>
</tr>
<tr>
<td>Maximum repetition rate (Hz)</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>
Damping Rings RF Systems

- Main damping rings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>1.98 GeV</td>
</tr>
<tr>
<td>Circumference</td>
<td>297 m</td>
</tr>
<tr>
<td>RF Frequency</td>
<td>714 MHz</td>
</tr>
<tr>
<td>Harmonic Number</td>
<td>708</td>
</tr>
<tr>
<td>Bunch Spacing</td>
<td>2.8 ns</td>
</tr>
<tr>
<td>Beam Current</td>
<td>0.75 A</td>
</tr>
<tr>
<td>σ_z</td>
<td>0.09 %</td>
</tr>
<tr>
<td>α</td>
<td>4 mm</td>
</tr>
<tr>
<td>α'</td>
<td>0.00066</td>
</tr>
<tr>
<td>$U_{str.}$</td>
<td>750 k eV/turn</td>
</tr>
<tr>
<td>$U_{HOM's}$</td>
<td>5.6 k eV/turn</td>
</tr>
<tr>
<td>$U_{parasitic}$</td>
<td>36 k eV/turn</td>
</tr>
<tr>
<td>ν_{RF}</td>
<td>1.5 MV</td>
</tr>
<tr>
<td>Number of Cavitys</td>
<td>3</td>
</tr>
<tr>
<td>Number of Klystrons</td>
<td>1</td>
</tr>
<tr>
<td>Cavity Wall Dissipation</td>
<td>42 kW cavity</td>
</tr>
<tr>
<td>Klystron Power</td>
<td>1 MW</td>
</tr>
<tr>
<td>Shunt Impedance</td>
<td>3.0 M\Omega cavity</td>
</tr>
<tr>
<td>$U_{do a d e f i l}$</td>
<td>25500</td>
</tr>
<tr>
<td>Coupling Factor</td>
<td>5.8</td>
</tr>
<tr>
<td>$\phi_{synchro} $</td>
<td>32°</td>
</tr>
<tr>
<td>Optimum Detuning at Full Current</td>
<td>106 k Hz</td>
</tr>
<tr>
<td>Synchrotron Frequency</td>
<td>6.9 k Hz</td>
</tr>
<tr>
<td>Loaded Q</td>
<td>3777</td>
</tr>
<tr>
<td>Energy acceptance</td>
<td>± 1.8%</td>
</tr>
</tbody>
</table>
HOM Damping

♦ Longitudinal modes

Cavity with 30° spherical mid section (714m):
30° nosecone, 3 dumbell wgs @ 30°, offset pep-type coupler
(714 MHz, 100m wake, 3 cm sigma)

\[\Delta \omega = j \frac{f_{rf}}{E_e} \alpha p \frac{f_0}{f_s} Z_{\text{eff}} \text{long.} \]

→ Damp higher-order modes

> Transverse feedback system required

⇒ HOM’s, two-beam instabilities, and resistive wall

♦ Transverse modes

Cavity with spherical mid section (714m):
3 dumbell waveguides at 30°,
dipole modes, offset pep-type coupler
(714 MHz, 100m wake, 3 cm sigma, x=3cm)

\[\Delta \omega = - j \frac{f_0}{2E_e} \beta_{x,y} Z_{\text{eff}} \text{trans.} \]
Gap Transient Effects

♦ Bunch-to-bunch synchronous phase variation
 ◇ Leads to energy variation after bunch compression
 ◇ 4° / 30 ps

♦ Compensation techniques
 ◇ Adaptive-inverse feedforward with broadband klystron (?f " 10 MHz)
 ◇ Harmonic cavities
 ◇ Ring off-frequency (•f " 40 kHz)
 ◇ High-stored-energy cavities

\[\Delta \phi = \frac{2k_I_o T_{gap}}{V_{cavity} \sin \phi_{synch}} \]
NLC Impedance Model

♦ Longitudinal wake
 ◊ Major vacuum chamber components
 → RF cavities
 → Resistive wall
 > Small vacuum chamber
 → BPM’s
 > High-frequency resonances
 → Ante-chamber slots
 → Bellows shields
 → Injection and extraction magnets

♦ Similar impedance model for transverse wake
 ⇒ Cho Ng talk
ZDR - Longitudinal single-bunch

- Potential well distortion
- Microwave instabilities
 - $Z/n \approx 0.025$
 - Strong threshold estimate
 \[I_p = \frac{2\pi |\eta| \left(\frac{E}{c} \right) (\beta \sigma_p)^2}{\left| \frac{Z}{n} \right|_{\text{eff}}} \]
 → Threshold $\approx 2 \times$ operating current
 - Simulations
 → Threshold $\approx 4 \times$ operating current

\[\lambda z (\text{mm}^{-1}) \]

\[V_{\text{ind}} (\text{kV}) \]

\[N \left(10^{10} \right) \]
ZDR - Transverse single-bunch

- Transverse mode coupling instability (TMCI)
 - Simulations

\[I_b = \frac{4 \left(\frac{E}{e} \right) \nu_s}{\langle \text{Im}(Z_\perp) \beta_\perp \rangle R} \frac{4\sqrt{\pi}}{3} \sigma_1 \]

→Threshold " 10 x operating current
ZDR - Fast ion instability

- Interaction between intense electron beam and ions gives rise to fast transverse instability
- Growth time <" 1 ms
- Experimental evidence from ALS and PLS

- Maintain average pressure < 1 nTorr
- Bunch-by-bunch feedback system
- Additional gaps in bunch trains
ZDR - Electron cloud instability

- Intense positron beam produces cloud of photoelectrons and secondary electrons
- Experimental evidence at BEPC
- Desorbs gas from surfaces
- Interaction between positron beam and electron cloud gives rise to fast transverse instability

- Low secondary emission coatings
- Bunch-by-bunch feedback system
- Solenoidal magnetic fields
ZDR - Lifetime and IBS

- Gas-scattering lifetime several hours
- Touschek lifetime few minutes
 - Increase bunch volume for commissioning studies
- Intra beam scattering (IBS)
 - Significant at lower energies
 - Higher energy preferable
 - Reduced growth from IBS
 - Reduced damping time
Conclusions

♦ Damping rings and synchrotron light sources face similar problems with collective effects
 ◇ Intense beams
 ◇ Small vacuum chambers

→ How good is the impedance model?
→ How good are the impedance calculations and measurements?
→ How good are the instability models and analyses?

⇒ Subjects of this workshop