The CLIC Beam Delivery System

R. Assmann, CERN-SL/AP

For the SL/AP-CLIC team and collaborators:

M. Mayoud, W. Coosemans (EST), M. Aleksa, S. Russenschuck (LHC), G. Guignard, N. Leros, T. Risselada, D. Schulte, I. Wilson (PS), N. Walker (DESY), O. Napoly (Saclay) and H.-J. Schreiber (Zeuthen)

Based on Talks of F. Zimmermann & R. Assmann
Outline

1 Introduction

2 Optics & Tools

3 Performance

4 Collimation Issues

5 Stability Issues in the IP

6 Conclusions
The Compact Linear Collider (CLIC) study at CERN:

Goal: Study a 3 TeV e+e- linear collider as an option for CERN’s long-term future with innovative two beam acceleration scheme (high gradient, no klystrons for main beam)

Collaborations with:

- CEA/CESTA, Le Barp (France)
- IHEP, Protvino (Russia)
- LBL, Berkeley (USA)
- SLAC, San Francisco (USA)
- Stockholm University (Sweden)
- Technische Universität, Berlin (Germany)
- LAL, Orsay (France)
- LLNL, Livermore
- INFN, Frascati (Italy)
- JINR, Dubna (Russia)
- KEK, Tsukuba (Japan)

The CLIC team:

The CLIC Complex

Accelerator Physics group in the SPS-LHC division responsible for:
Design and study of damping ring, collimation, beam delivery! Help in CTF3.
Major challenges: High energy
Small spot size
High beam power

Prepare design and show feasibility in real environment!
Poor Physicist’s Final-Focus Experiment: Understanding the challenge!

Too easy?
Poor Physicist’s Final-Focus Experiment: Understanding the challenge!

Still too easy?
Poor Physicist’s Final-Focus Experiment: Understanding the challenge!
Poor Physicist’s Final-Focus Experiment: Understanding the challenge!
Final Focus Layout

Schematic of a conventional final focus.

Used: Dipole, Quadrupole, Sextupole, (Octupole)

Design: Position, magnetic field.

Performance: Design emittance growth.

Imperfections (vibration, alignment, field errors, beam loss induced, ...)

quadrupole vibr./drift
orbit stability at sextupoles

"-l"
Design Constraints

- **chromaticity:** $\Delta \sigma / \sigma = \xi \delta_{\text{rms}}$, with $\xi \approx \int \beta K \, ds$.
- **limited quadrupole strengths,** $\rightarrow \xi$.
- **synchrotron radiation in bending magnets,** $\delta_{\text{rms}} \propto \gamma^{5/2} \theta_B^{3/2} / l_B$, $\rightarrow l_B$.
- **synchrotron radiation in final quadrupole (Oide effect),**
 \[\frac{\Delta \sigma_y}{\sigma_y} \propto \gamma^{5/2} F(K, L_Q, l^*) \frac{\epsilon^{3/4}}{\beta_y^{7/4}}; \]
 F smallest if $l^* \ll L_Q$; also L_Q should be small to confine ξ; $\rightarrow \xi$.
- **higher order aberrations,** from chromatic breakdown of linear transformations between sextupoles, and between sextupoles and final doublet.

Unfavorable length scaling…
Outline

1 Introduction

2 Optics & Tools

3 Performance

4 Collimation Issues

5 Stability Issues in the IP

6 Conclusions
Baseline final-focus optics; modular design, odd-dispersion function a la Oide. Total length 3.3 km.
Alternative Compact Optics

- Derives from NLC 1-TeV final focus, developed by Raimondi and Seryi.

- To limit the impact of synchrotron radiation, sextupole strengths were increased by a factor 3.4 and all bending angles reduced accordingly.

- Upstream quadrupoles, sextupoles, and bending angles have been empirically fine-tuned for maximum luminosity, using a Monte-Carlo optimization.
Optimization with Sixtrack

procedure:
(1) call minuit from fortran,
(2) minuit changes parameters and calls script `run minuit' [see picture],
(3) rematch linear optics using new parameters with MAD
(4) produce MAD twiss tape le `TWISS2'
(5) convert this into Sixtrack90 input le [executable xsb],
(6) track with Sixtrack90 `pointer',
(7) compute luminosity on a grid ['run track2'],
(8) read luminosity value back into minuit,
(9) iterate

F. Zimmermann
F. Schmidt
Compact final focus scaled from the NLC design by Raimondi & Seryi; not modular; dispersion across the final doublet; linear and nonlinear optics are mixed. **Total length 600 m.**
Comparison I

<table>
<thead>
<tr>
<th></th>
<th>baseline</th>
<th>compact</th>
</tr>
</thead>
<tbody>
<tr>
<td>beam energy</td>
<td>1.5 TeV</td>
<td></td>
</tr>
<tr>
<td>no. of bunches per second</td>
<td>15400</td>
<td></td>
</tr>
<tr>
<td>bunch population</td>
<td>4×10^9</td>
<td></td>
</tr>
<tr>
<td>ideal luminosity w/o pinch</td>
<td>$4.56 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$</td>
<td></td>
</tr>
<tr>
<td>IP beta functions</td>
<td>8.0 (x), 0.15 (y) mm</td>
<td></td>
</tr>
<tr>
<td>IP normalized emittances</td>
<td>0.68(x), 0.02 (y) μm</td>
<td></td>
</tr>
<tr>
<td>full-width momentum spread</td>
<td>0.8–1.0%</td>
<td></td>
</tr>
<tr>
<td>demagnification factor</td>
<td>90 (x), 346 (y)</td>
<td></td>
</tr>
<tr>
<td>peak vertical beta function</td>
<td>1000 km</td>
<td>200 km</td>
</tr>
<tr>
<td>peak dispersion</td>
<td>10 cm</td>
<td>5 cm</td>
</tr>
<tr>
<td>total length</td>
<td>3282 m</td>
<td>548 m</td>
</tr>
</tbody>
</table>
Comparison II

<table>
<thead>
<tr>
<th>optics</th>
<th>baseline</th>
<th>compact</th>
</tr>
</thead>
<tbody>
<tr>
<td>total bending length</td>
<td>705 m</td>
<td>276 m</td>
</tr>
<tr>
<td>total bending angle $\sum</td>
<td>\theta_i</td>
<td></td>
</tr>
<tr>
<td>gradient of last quadrupole</td>
<td>586 μrad</td>
<td>363 μrad</td>
</tr>
<tr>
<td>gradient of 2nd last quadr.</td>
<td>450 T/m</td>
<td>388 T/m</td>
</tr>
<tr>
<td>strength of SD sextupole</td>
<td>184 T/m</td>
<td>135 T/m</td>
</tr>
<tr>
<td>strength of SF sextupole</td>
<td>1.29 m$^{-3}$</td>
<td>20.1 m$^{-3}$</td>
</tr>
<tr>
<td>free length from IP l^*</td>
<td>2 m</td>
<td>4.3 m</td>
</tr>
</tbody>
</table>
Outline

1 Introduction

2 Optics & Tools

3 Performance

4 Collimation Issues

5 Stability Issues in the IP

6 Conclusions
Luminosity, in units of the ideal geometric luminosity L_0, vs. the full-width momentum spread for the baseline optics, as simulated by MAD and Sixtrack90 with and without synchrotron radiation.
Luminosity, in units of the ideal geometric luminosity L_0, vs. the full-width momentum spread for the compact optics, as simulated by MAD and Sixtrack90, including random energy fluctuations due to synchrotron radiation.
Horizontal and vertical rms beam sizes simulated by Sixtrack90 including synchrotron radiation vs. the full-width momentum spread for the two optics.
Non-linear analysis using Sixtrack90

procedure: (1) get Taylor map from Sixtrack90 [left] (2) evaluate the relative spot-size increase caused by each term [right]
Residual aberrations \(\Delta \sigma_{x(y)}/\sigma_{y(x),0} \), which are added in quadrature to the linear spot sizes \(\sigma_{y(x),0} \), inferred from Sixtrack90.

<table>
<thead>
<tr>
<th></th>
<th>Lie gen.</th>
<th>(\Delta \sigma_{x}/\sigma_{x0})</th>
<th>Lie gen.</th>
<th>(\Delta \sigma_{y}/\sigma_{y0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>(x'^4 \delta)</td>
<td>0.70</td>
<td>(y'^2 \delta^2)</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>(x'^2 \delta^3)</td>
<td>0.43</td>
<td>(x'y'^2 \delta^2)</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(x'^2 \delta^2)</td>
<td>0.40</td>
<td>(y'^2 \delta^3)</td>
<td>0.12</td>
</tr>
<tr>
<td>compact</td>
<td>(x'\delta^2)</td>
<td>0.42</td>
<td>(y'^2 \delta)</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>(x'^2 \delta)</td>
<td>0.41</td>
<td>(x'^2 y'^2 \delta)</td>
<td>0.31</td>
</tr>
</tbody>
</table>

This table provides guidance for further improvements!
Reduction of β_x^*

Luminosity in units of ideal luminosity vs. horizontal IP beta function. Two schemes are comparable.

F. Zimmermann et al
Outline

1 Introduction
2 Optics & Tools
3 Performance
4 Collimation Issues
5 Stability Issues in the IP
6 Conclusions
Vertical vs. horizontal beam sizes required for spoiler survival and values at spoiler locations.
Beam halo at final-quadrupole entrance for baseline (top) and compact optics (bottom). The initial (uniform) distribution extends up to $\pm 15 \sigma_x$, $\pm 70 \sigma_y$, and $\pm 4\%$.

F. Zimmermann et al
Synchrotron radiation fans across the final doublet for the baseline optics with beam envelopes of $23\,\sigma_x$ and $80\,\sigma_y$. Pictures refer to horizontal (top), vertical (center) and 45^o plane (bottom).
Synchrotron radiation fans for the compact optics with beam envelopes of $14 \sigma_x$ and $83 \sigma_y$.

O. Napoly
Number of lost electrons per muon passing through a detector with 7.5-m radius as a function of position along baseline final focus. Potential collimator locations are indicated.
Optics of a 3-TeV CLIC beam delivery system consisting of a 5.6-km long collimation section, scaled from the 2000 NLC design and the 550-m compact final focus.
Consider:

- 4 vertical spoilers, 0.5 r.l. beryllium (177 mm)
- 4 vertical absorbers, 20 r.l. copper coated titanium (712 mm)
- collimation depth set to 80 σ_y
- compute change of IP displacement for incoming betatron oscillations in presence of collimator wakefields

$\Delta y' = \frac{2 N_b r_e}{v} \left[\frac{(4\lambda \sigma_z)^{1/4}}{g^{3/2}} + \frac{L_F (\lambda \sigma_z)^{1/2}}{2\sqrt{\pi} g^3} \right] y$

where y is the offset from the center of the chamber, $\lambda [m] = \rho [\Omega m] / (120\pi)$, L_F the length of the collimator flat part, and g the half gap. The taper angle is assumed to be optimally chosen as $\theta_{opt} \approx 1.1(\lambda \sigma_z/g^2)^{1/4}$ [J. Irwin]

R. Assmann, S. Redaelli, F. Zimmermann
IP orbit displacement for a 1σ change in incoming beam position or slope (the two curves) as a function of bunch population.
`Maximum' IP orbit displacement for a 1σ change in incoming beam trajectory as a function of bunch population.

R. Assmann, S. Redaelli, F. Zimmermann
`Maximum' IP orbit displacement for a 1σ change in incoming beam trajectory vs. beta function at the collimator.

R. Assmann, S. Redaelli, F. Zimmermann
Outline

1 Introduction
2 Optics & Tools
3 Performance
4 Collimation Issues
5 Stability Issues in the IP
6 Conclusions
The goal of the proposed study is to show that the present design parameters of CLIC are feasible in a real accelerator environment, using and further developing latest cutting-edge stabilization technology and time-dependent simulation programs.

Active and passive stabilization technology subject of intense industrial research and development. Applications:

Chip lithography, electron-transmission microscopy, NMR devices, solid-sate physics, satellites, airplanes, gravitational wave detectors, lasers, …

E.g. If TEM can achieve 0.05 nm resolution why can’t we use this?

Collaboration with strong effort at SLAC (A. Seryi, J. Frisch, et al)
1. Review of existing measurements and solutions.
2. Establish vibration measurements with sub-nm accuracy.
3. Test and characterize active and passive stabilization equipment.
4. Predict luminosity stability for the CLIC complex.

Connected tasks:

• Adapt solutions to the actual quadrupole designs (help from LHC)
• Test and characterize eventual prototype magnet
• Understand magnetic versus mechanical stability of quadrupole center (help from FNAL)
• Adapt solutions to the requirements of the physics detector (CLIC physics study group)
• Set-up advanced simulation tools for luminosity stability
Vertical displacement sensitivities corresponding to a 2% luminosity loss (FFADA, S. Fartoukh)

Full bars: Pulse-to-pulse `jitter' tolerances, due to both the IP orbit motion and IP spot-size increase.

Open bars: `Drift' tolerances referring only to increases in the IP beam size.
Stabilization requirements

Two types of quadrupoles in two different sub-systems:

Type 1: Linac quadrupoles
- **Number:** 1300 times two
- **Field:** 200 T/m
- **Transverse size:** 0.15×0.11 m
- **Length:** 0.46 – 2.08 m
- **Weight:** 69 – 312 kg (+ 20% supports)

Goal: 1.3 nm (vertical) rms uncorrelated motion above 4 Hz

Type 2: Final Focus quadrupoles (short or standard solution)
- **Number:** 2/4
- **Field:** 388 or 450 T/m
- **Transverse size:** 4.3 cm (outer radius)
- **Length:** 3.50 or 4.75 m
- **Weight:** 250 or 50 kg (+ 20% supports)

Final Focus quadrupoles (short or standard solution):
- **Field:** 388 or 450 T/m
- **Transverse size:** 4.3 cm (outer radius)
- **Length:** 3.50 or 4.75 m
- **Weight:** 250 or 50 kg (+ 20% supports)
Studies on Final Quadrupole

Cross section of the final focusing quadrupole.

G=468 T/m for the permanent magnet material VACOMAX 225HR Sm$_2$Co$_{17}$ (coercitivity of 820 kA/m).

Issues of radiation, beam loss heating, solenoid are being studied.
Vibration measurements with sub-nanometer accuracy

(S. Redaelli, N. Leros, W. Coosemans, R. Assmann)

Experimental set-up:

Instrument Type: Digital grade long travel geo-phones
Company: GeoSig
Model: Velocity sensor GSV-310
Full scale range: ± 1 mm/s
Dynamic Range: > 96 dB or better
Resolution: 15.3 nm/s
Linearity: < 0.3 % of full scale
Cross Axis Sensitivity: < 0.1 % of full scale
Frequency Response: 1 to 315 Hz
Damping: standard 0.7
Weight: 0.8 kg
Package Size: 63 x 63 x 140 mm

Location:
Not too quiet, not too noisy!
Measurements

Analysis tools developed
Noise level determined
Absolute accuracy still to be determined
Work on stabilization at lower frequencies

Measurements taken
Noise level ~ low enough for sub-nm resolution
Measured vibration above tolerance

Now: Starting to get stabilization equipment + work on simulation of luminosity performance

(S. Redaelli, N. Leros, W. Coosemans, R. Assmann)
Outline

1 Introduction

2 Optics & Tools

3 Performance

4 Collimation Issues

5 Stability Issues in the IP

6 Conclusions
Conclusions

- Two optical solutions (/afs/cern.ch/eng/clic/3tev/OPTICS)
- Sixtrack90 and MAD for tracking. Sixtrack90 computes aberrations of arbitrary order; also SR now treated.
- Compact system (P. Raimondi) provides larger λ^*, a wider momentum bandwidth, and reduced beam tails.
- Tunability, tolerances and luminosity comparable to baseline.
- Horizontal collimation depth is reduced by about a factor of two due to increased λ^* and dispersion across the final doublet.
- First design of 3-TeV CLIC beam delivery system, ~6 km long.
- Wakefields look acceptable.
- Stability requirements reviewed and stability study started. Vibration test stand at CERN. Apply latest stabilization tech.
- Magnet design work started.
- Still many open questions. Work is ongoing...
Amongst other topics, address many stability issues!

Where is the limit?

Hope for input from colleagues in our field and from other fields. Can we give a limit?

Please contact R. Assmann or F. Zimmermann if you have ideas, input, special requests!