Recent result in ATF Damping Ring

Kiyoshi KUBO (KEK), 2001.7.6. Snowmass

Tuning for Low emittance

COD correction: using steering magnets, minimize

$$\sum_{BPM} x^2$$
 and $\sum_{BPM} y^2$

Vertical COD-dispersion correction: using steering

magnets, minimize

$$\sum_{BPM} y^2 + r^2 \sum_{BPM} \eta_y^2$$

Coupling correction: using skew quads, minimize

$$C_{xy} \equiv \sqrt{\sum_{H-steers} \left(\sum_{BPM} \Delta y^2 / \sum_{BPM} \Delta x^2 \right) / N_{steer}}$$

	Average	<1.1E-11 rad-m
COD	2.28	20 %
	(E-11 rad-m)	
V COD-dispersin	1.67	51 %
Coupling	0.58	91 %

	Simulate	l vertical	emittance	after	each	correctio
--	----------	------------	-----------	-------	------	-----------

Misalignment : as measured

+ random 30 micron offset

+ random 0.3 mrad. rotation

BPM error : offset 300 micron, rotation 0.02 rad.

Horizontal emittance vs. Intensity

Vertical emittance vs. Intensity

Energy spread vs. Intensity

Energy Spread vs. Store time

T (sec)

Emittance vs. Energy Spread

sigE/E

Summary of single bunch emittance Damping ring tuning

Small v-dispersion and small x-y coupling: achieved

Energy spread and horizontal emittance

Agree well with calculation at low intensity

Dependence on intensity

Explained by intra-beam scattering

Suggesting low vertical emittance

Vertical emittance

 $\varepsilon_v/\varepsilon_x \sim 0.01$ achieved.

Strongly depend on intensity, may be explained by IBS.

Still some problems in beam size measurement

Multibunch operation

Started in Nov. 2000

Gun out: 1.2×10^{11} , 0.78 Hz, 18 bunch Energy compensation in Linac: successful Ring and Extraction line:

 5×10^{10} , 18 bunch (~ 3×10^9 /bunch) Emittance, X: 1.6E-9, Y: 3.0E-11 m-rad Intensity uniformity and injection efficiency should be improved Photo cathode RF-gun study started Instrumentation for multibunch Multibunch wire scanner measurement: commissioned Multibunch BPM : under development Multibunch laser wire measurement: started Other activities in ATF

OTR (optical transition radiation) monitor ODR (optical diffraction radiation)

monitor

Polarized positron production

gamma-ray generated from laser-electron scattering

Double kicker system for stable extraction study