# GROUND MOTION MODEL FOR THE LHC

A. Verdier and L. Vos Geneva, Switzerland

#### 1 INTRODUCTION



(cultural noise taken out)

• power of ground vibrations increases steeply with decreasing frequency

===> possibility of <u>non-negligible orbit deformations</u> if the motion of accelerator quadrupoles is <u>uncorrelated</u>

• what about plane wave excitation?

)

ground motion wavelength matches the betatron wavelength

==> very narrow band effect for frequencies around 1 Hz, small spectral power, small separation effect in LHC < 1/1000 of rms beam size

#### 2.2 Basic model

The model consists of a transfer function and a source of excitation

#### 2.2.1 transfer function

maximum seismic length of the earth is  $\sim 1500 s$ 

seismic 'depth' of the earth is about 1/3 of this

===> a cut-off frequency of  $f_{co}\sim 2$  mHz

confirmed by the far away amplitude response of earth quakes:



fast oscillation is the response of the oceans pounding on the continents

amplitude response is not incompatible with a high-pass filter behaviour with a power cut-off frequency  $f_{co} \sim 1.5 \text{ mHz}$ 

note: seismic wave attenuation with distance is very small

#### 2.2.2 source

the obvious source is: earth quakes!

the transfer model suggests a source with a  $f^{-3}$  frequency slope to reproduce noise spectra

examination of a substantial body of phenomenological material has led to the Gütenberg-Richter law:

$$\log(n) = -M,$$

n is the number of earth quakes in a given area with a magnitude M or larger

$$M = \frac{1}{m} \log \left( \frac{x}{x_0} \right)^2$$

 $x_0$  is the lower observation limit of seismographs.

According to *Hamblin* m = 2 so that :

$$\left(\frac{x}{x_0}\right)^2 = \frac{1}{n^2}.$$

The power density of the source can be found by differentiation:

$$\frac{d(x/x_0)^2}{dn} = -\frac{2}{n^3} \propto -\frac{1}{f^3}$$

## Combining transfer function and source of vibrations yields the ground motion spectrum:

$$\frac{dx^{2}}{df}(f) = \frac{k_{gm}}{f^{2}\sqrt{f_{co}^{2} + f^{2}}} [m^{2}/Hz].$$

 $k_{gm}$  is a proportionality factor of the source to fit the observed spectral power density. It is a non-local quantity that varies from  $\sim 10^{-18} \ m^2/s^2$  to  $\sim 10^{-16} \ m^2/s^2$  depending on the state of global excitation

#### Comparison with various observations:



The line marked 'empirical law' is related to the model proposed by Takeda et al.

#### 3 OBSERVATIONS WITH BEAM

coherence length can be determined from orbit measurements assuming an average value for  $k_{gm} = 10^{-18} \text{ m}^2/\text{s}^2$ .

integration noise spectrum yields displacement2 of a single element:

$$dx^{2}(t) = \frac{k_{gm}}{f_{co}^{2}} \left( \sqrt{1 + (f_{co}t)^{2}} - 1 \right).$$

orbit deformation: multiply with an optical amplification factor:

$$O_A = (\beta K l/2 \sin(\pi q))^2 N$$

 $\beta$  the optical function at a quadrupole

Kl integrated focalisation force

N is the number of uncorrelated blocks around the accelerator (at the maximum the number of F or D quadrupoles)

Brinkman & Rossbach (1994)

**HERA-proton**  $L_{ch}$ : 250 m **HERA-electron**  $L_{ch}$ : 280 m

Tecker (1996)

LEP  $L_{ch}$ : 130 m (known effect supra quads removed)







### half sep. / σ



Problem with the ATL interpretation:

Function f(s) subtracted from the positions y(s)

$$dH^{2}(L) = \int_{0}^{C} \left[ y(s+L) - f(s+L) - y(s) + f(s) \right]^{2} ds$$

- the functions f(s) and y(s) are uncorrelated
- the integral of y(s) is zero

$$dH^{2}(L) = dH_{0}^{2}(L) + \int_{0}^{C} \left[ f(s+L) - f(s) \right]^{2} ds$$

Harmonis:  $f(s) = a \times \sin(2\pi ns/C)$ 



SLAC Workshop on ground motion (Nov. 2000) / A. Verdier

# TO BE KEPT IN MIND FOR THE LHC

#### Short term:

- Normal level of excitation: "manual" control
- High level of excitation: orbit feedback

### Long term:

- Alignment data in LHC database for evaluation of annual realignment
- Systematic analysis of the closed orbits to detect important motions