The 22nd Advanced ICFA Beam Dynamics Workshop on Ground Motion in Future Accelerators

Slow Ground Motion Observed by Preliminary Results

Fred Raab, Eric Morganson
LIGO Hanford Observatory

Luca Matone
LIGO California Institute of Technology
Goal:

\[h \sim 10^{-22} / \sqrt{\text{Hz}} \; @ \; 150 \; \text{Hz} \; \text{or} \]
\[h \sim 10^{-21} \; \text{RMS} \; @ \; 150 \; \text{Hz}, \; \text{BW} \; 100 \; \text{Hz} \]

Recycled Michelson with
2km/4km Arm Fabry-Perot

Photodetector

Laser
April 2000: 2km X-arm
⇒ control signal monitored for 22 hours

Experimental Setup:

Locking technique:
Pound-Drever-Hall ⇒ phase modulated beam
What are we measuring?

- Phase $\propto k \times L$

\Rightarrow necessary to stabilize laser frequency

Goal: $3 \times 10^{-7} \text{Hz}/\sqrt{\text{Hz}}$ @ 150 Hz

More than one stabilization stage:

@ low frequencies, the laser follows the reference cavity

\Rightarrow to study the ground motion, the behavior of the reference cavity must be taken into account
E. Morganson: model for tidal strain at LIGO sites (P. Melchior)

- induced by Moon and Sun
- but never compared to experimental data

![Graph showing estimated tide (blue) and corrected arm data (red).](image)

- offset of 150 min
- qualitative agreement
- slow drift of the cavity length observed?
Conclusions:

• correction signal \Rightarrow cavity length drifted by $\sim 100 \, \mu m$;

• observable period of 12 hrs;

• temperature drift of reference cavity to be taken into account;

• qualitative agreement between model and data;

• 150 min offset?

• cavity slow drift?