

The Implications of Geology, Environment and Construction for Existing and Future Machines

Chris Laughton NuMI Project

Model/Design Input

- Geology
 - Local through Regional
- The Subsurface Environment
 - Stresses
 - Hydrology
- Construction
 - In soils
 - In rocks

Small Geo-Scale

- The "Lab" Scale
 - Millimeters to decimeters
 - Testing intact specimens
- Model/Design from Sample Testing
 - Strength
 - Stiffness
 - Dynamic Response
- Time Dependent Displacements
 - Expansion
 - contraction

5-10cm Ø Samples

Time Dependent Ground Response

Figure 7.6 Time-deformation plot during consolidation for a given load increment

Consolidation Settlement

- primary
- secondary

NC?

OC? stiffer

Figure 25.18 Observed and computed behavior of Pierre shale subjected to a decrement in expansion pressure.

"Rebound"

Swell

Heave

Swelling

"Intermediate" Geo-Scale

- The Engineering Structure Scale
 - 10s of centimeters to 10s of meters
- Discontinuity Sets
 - Bedding
 - Jointing
- Geometric Characteristics
 - Geometry & density of fractures
- Fractures Mechanical Characteristics
 - Rock surfaces
 - Fill materials
- Model/Design for Spatial Variation within Geologic Domains

b: Irregular

c: Tabular

d: Columnar

Rock Mass "Structure"

Large Geo-Scale

- Geologic Structure Scale
 - 100 meters to 100 kilometers
 - The geologic map
 - Conformity/Predictability?
 - Zones of Weaknesses?
 - Seismic/Aseismic Faulting
- Model/Design to Accommodate Variability
 - Between geologic domains
 - At boundaries between geologic domains

Rock Stress Issues

- In-Situ Stresses
 - Vertical stress ~ consistent with cover load
 - horizontal stress $\sim f$ (geo-history)
- Swell Stresses $\sim f$ (rock minerals)
- "Overstress" Responses to Construction

+ high gripper, machine loads on walls+ weakened rock mass conditions= bearing capacity failures	
+ high in situ stresses + low intact strength = ductile failure / squeezing	
+ high in situ stresses + high intact strength = brittle failure / rock burst	

Figure 10.6 Regional stress field determinations. A. Worldwide distribution of principal stress orientations. B. Stress orientations in the coterminus United States.

Water Concerns

- Fluctuations in water level of "submerged tunnels" may cause ground movements
- Extraction of water/oil/gas or mining of minerals below the tunnel may cause ground settlement
- Reduced Pore Water Pressures may cause ground movements:
 - NC Clay Settlement
 - OC Clay Expansion

Figure 13.2 Example of a two-lane tunnel under water table

Cut & Cover Sections

Figure 13.1 Example of a drained two-lane tunnel

- Cast-in-place or Pre-Cast Concrete Boxes
- + water = waterproofing systems

.

Pre-Cast Segmental Lining

Hard Rock Tunneling

• Bolting upon excavation/lining (if any) after mining

+ water = ground treatment/grouting

Key Deformation Areas

- Abrupt Transitions/Contrasts in Sub-Grade Stiffness
 - Compacted fill undisturbed ground interface
 - Ground interfaces (within and between soils and rocks)
- Abrupt Transitions in Cross-Sectional Shapes/Sizes
 - Running tunnel to chamber

Fig. 3 - SIMPLIFIED LONGITUDINAL SECTION OF THE POINT 4 CAVERN SHOWING THE GEOLOGICAL STRATA & INITIAL CONVERGENCE SECTIONS

Fig. 6 - CAVERN CROSS-SECTION SHOWING CONVERGENCE & EXTENSOMETER CONFIGURATIONS

"Dream-Machine" Layouts

- Find "Good" Ground (consistent, predictable "easy mining")
 - verify compatibility with technical criteria, especially:
 - Stability? (1 mm/km/year? -> likely to be \$-prohibitive at many sites)
 - Humidity? ("a tunnel is a structure that leaks" -> don't ask for perfection)
- Design to Build, Install, Operate, Maintain:
 - Keep it simple, avoid "tunnel gymnastics", such as:
 - High gradient alignments
 - Multiple tight curves/right-angles
 - Multiple cross-sections and floor levels
 - Encourage design flexibility match mined-sections to:
 - Preferred (contractor-owned/familiar) equipment
 - Efficient (contractor-familiar) treatment/support methods and means
 - Standardize for routine operations (reuse of equipment)
 - Use experienced designers and builders, from R&D concepts to construction

PICCADILLY CIRCUS The Heart of London

A Special Exhibition at the

London Transport Museum
The Piazza, Covent Garden
25 May-26 November 1989
Open daily from 10.00 to 18 00
Last admission 17.15

VECTORIAN Kartographie und mehr Meeresspiegel 60m Meeresboden 40m Untere preide Eisenbahntunnel Ø 7.6m Kreidemergel Lüftunga- und Wartungstunnel Ø48m

Tunnel Visions

Tunnel Visions is a series of eight two hour sessions on possible future accelerator options for Fermilab. The leading proponents of Linear Colliders, Muon Colliders, and Very Large Hadron Colliders will be challenged by a group of four conveners in each session.

Fermi National Accelerator Laboratory, 1 West between 3:00 pm and 5:00 pm

Friday, February 5, 1999 Overview of Linear colliders • T. Raubenheimer, SLAC

Thursday, March 25, 1999 The NLC • M. Ross, SLAC Thursday, April 8, 1999 CLIC • J. Delahaye, CERN

Thursday, May 6, 1999 TESLA • R. Brinkman, DESY Thursday, May 13, 1999 Muon Colliders • R. Palmer, BNL

Thursday, May 27, 1999
Neutrino Beams at a Muon Collider Facility • F. Geer, Fermilab

Thursday, June 3, 1999 VLHC High Field Option • P. Limon, Fermilab

Thursday, July 1, 1999 VLHC Low Field Option • W. Foster, Fermilab

For transparencies of the talks or changes in the program: Fermilab Home Page: http://www.fnal.gov

For questions: alvin@fnal.gov and holtkamp@fnal.gov

Cost/Schedule Comments

- Kenny Construction Estimate for the 3TeV
 - 34 km of 3.6m Excavated Diameter Tunnel
 - − ~125 m depth in Galena Platteville
 - \$1240 / ft (TM-2048)
- Can it be done more cheaply? Yes
 - Feedback from Industry see Library Documentation
 - Tunnel Designers and Construction Managers
 - Contractors
 - Equipment Manufacturers (Robbins Report), Materials Suppliers