

Nanometer resolution BPM RD

Monday, July 14, 2003

Marc Ross

What are the uses of nanometer-resolution BPMs?

• 200 nm resolution is needed for linac operation (similar for DR and other collider regions)

- for LC, this is not it...

• 3GLS evaluation of sub-micron stability

– Interesting, but still not it

- nanoBPMs:
 - Measure beam position with accuracy better than support stability
 - Use the beam as a *mechanical 'device'* to prove active stabilization?
 - Measure beam parameters other than position
 - Many applications in beam manipulation *correlations*

Why are RF BPMs ideal?

- *kTB* energy corresponds to <1nm at 1MHz, room temp.
- Narrow bandwidth
 - Allows easy oversampling and direct downconversion
- Accurate, stable construction
- High central frequency
 - This is what allows *correlation* measurement
 - (ATF 6400 MHz, 28mm $\lambda/2$, 20mm FWHM)
 - (NLC/JLC 11424 MHz, 12mm $\lambda/2$, 0.25mm FWHM)

Made by BINP (Balakin et.al)

Cross-sectional view of cavity BPM.

- 1.- Cavity sensor.
- 2- Heater.
- 3 Temperature sensor.
- 5 Coupling slot.
- 6 Output waveguide.
- 7 Output feedthrough.
- 8 Beam pipe.
- 9 Vacuum flange.
- 10 Support plate.
- 11 Y position output.
- 12 X position output.
- 13 Heater control connector.

Cavity BPM modes

Cavity BPM model. TM110 mode

Before

SLAC-built yaw and pitch movers

American Linear Collider

Group

Typical X Cavity Signal with Fit

July 14, 2003

Marc Ross – *SLAC*

11

-CO Amer	rican Linear Collider Group	Estimates: Noise			
Parameter					
Thermal noise	-174	dBm/Hz			
IF bandwidth	20	MHz			
Noise in-band	-101	dBm			
System Components	gain (dB)	noise figure	output noise (V)		
Cable	-1.2	(dB) 1.2	2 x 10 -6		
Limiter	-0.8	2	2 x 10 -6		
C-band amplifier	10	7	1 x 10 ⁻⁵		
Mixer	-5.5	7.3	6 x 10 -6		
filter	1	7.4	5.6 x 10 -6		
IF amplifier and anti- alias filter	48	8.5	.0016		
digitizer	0	8.5	.0013 (10 counts)		

July 14, 2003

Marc Ross – *SLAC*

Estimates: Signal

Parameter		Units
Cavity Loss	3.89 x 10 ¹⁰	Joules/Coulomb ² /mm ²
Cavity internalQ	5100	(from V. Vogel)
External Q	3300	
Coupling	.35	β
Energy coupled out	1.37 x 10 ¹⁰	Joules/Coulomb ² /mm ²
Power out at 1 nm displacement over	1.12 x 10 ⁻¹³ (-99.5dBm)	Watts (1 nm, 1 x 10 ¹⁰ ppb, 310 ns fall time)
Gain used	2.24 x 10 ⁵ (53.5 dB)	(June 2003)
Signal strength after amplification	2.52 x 10 ⁻⁸ (-46 dBm)	Watts (1 nm, 1 x 10 ¹⁰ ppb, measured 310 ns fall time)
Signal strength	1.12	mV (rms – 50 Ohm)
Digitizer counts	9	Counts rms at beginning of decay
Digitizer full scale	913	nm ($8192 = 2^{13}$ full scale)

Typical Calibration – MM5X y showing effect of slow beam drift

Readings from BPM1 as its mover is adjusted: 32 ATF pulses x ~10 mover settings superimposed. 320 ATF pulses in total.

• micron(s) calibration using digital indicator

How to calibrate 1nm?

Calibration with beam – move the BPM

beam jitter -y

- simple record of ~1500 pulses roughly in sequence
 - 4 um rms, large thermal stability problems (not seen in winter)

Linear fit with all ...

- X: measurements matrix, 1 row/machine pulse, 13 cols including I, k is the column index
- A: coefficients
- (*x* is attenuated (20dB))

(nm)

$$AX_{j \neq k} = X_k$$

$$\sigma_{bpm} = rms(AX_{j\neq k} - X_k)$$

1 <i>x</i>	2x	3 <i>x</i>	1 <i>y</i>	2 <i>y</i>	3 <i>y</i>	1 <i>x ′</i>	2 <i>x ′</i>	3 <i>x</i> ′	1y′	2y ′	3 <i>y</i> ′
792	326	551	76	43	82	435	329	290	50	161	42

(~nm effective dipole size \rightarrow ~0.1 urad)

- data analysis including other 2/3 of the digitized waveform
 - checks and control of saturation
- electronics
 - bench test noise 2x higher than predicted amplitude
 - lock digitizer clock and local oscillator
- evaluation of mechanical stability
 - New support system from LLNL
- stabilization of ATF beam
- cavity tuning (to be done by BINP group)

July 14, 2003

Nano-meter Beam Position Monitor RD Marc Ross – **SLAC**