

Accelerator Instrumentation RD

Monday, July 14, 2003

Marc Ross

Linear Collider RD

- Most RD funds address the most serious cost driver *energy*
- The most serious impact of the late technology choice is the failure to adequately address *luminosity* RD issues

July 14, 2003

July 14, 2003

R&D Challenges

- 1. Precision microwave
- 2. IR final doublet girder (~ internal to detector)
- 3. Beam size from optical transition/diffraction radiation
- 4. Bunch length
- 5. Storage ring instabilities electron cloud
 - surface physics
- 6. Radiation modeling
- 7. Permanent Magnets
- 8. RF breakdown

From the April 2002 LCRD kickoff meeting

9. Control system

July 14, 2003

American Linear Group	Collider Cost drivers (%)
 Warm Inj 15 ML 54 BD 8 Ctrl 4 Other 18 	 Cold Inj 23* ML 49 BD 8 Ctrl 3 Other 18
 ML EDI 14 <i>RF source/dist</i> 40 Girder 18 Civil 18 Other 10 	 ML EDI 13 Cryo 38 RF 19 Civil 12 Other 16

unofficial, ~personal, estimates

July 14, 2003

Accelerator Instrumentation RD

Marc Ross – SLAC

Risk/cost Drivers (1)

- Risk can be assessed many ways according to different metrics →
 - Example:
 - Availability simulation assessment of risk
 - Cold linac cryomodule
 - The risk is: availability of the cryomodule, especially active components within it
 - All will agree that careful engineering is needed to mitigate risk and make sure that the:
 - Cavity tuners
 - Piezo tuners
 - Coupler interlocks
 - Cold 'moving parts'
 - Are as reliable and as reasonable as possible
 - and that failures are 'soft'

July 14, 2003

Availability simulation

- What happens when...
- a cryomodule component fails?
 - many cryomodule components are needed for stabilization systems/protection systems
 - first order effect may be negligible...
 - depends on the intrinsic stability
 - depends on the variability of beam parameters
 - how well integrated are the cryo RF controls?
 - *(example of TTF, JLAB)*

July 14, 2003

Risk/cost Drivers (2)

- Both warm and cold:
- Linac *emittance propagation* spurious dispersion is extremely important for both
 - (perhaps single most important effect)
 - impact of BPM performance
 - impact of mis-alignment
 - impact of tuning time
- Additional beam size instrumentation within the linac
 - is there a need for instrumentation within the cold systems?
 - (not the TDR paradigm)
- What about the 'cold' BPM's? \rightarrow how reliable are they?

July 14, 2003

RD

- Most emittance dilution begins with a simple linear correlation
- can catch and correct
 - beam <u>position</u> monitors
 - beam <u>correlation</u> monitors

- Controls/electronics can have large leverage on cost
 - national labs now substantially lag in this technology
 - integration

July 14, 2003

Accelerator Instrumentation RD Marc Ross – **SLAC**

ПΠ

Three examples:

- correlation monitors
 - recent results
- *Multi-bunch* behavior of uwave cavity BPM's
 - crude estimates/interesting pathologies
- longitudinal phase space
 - *recent results*
 - extremely short bunches/bunch shaping

July 14, 2003

Correlation monitor: Deflection cavity/detector BPM

- I/Q cavity response with deflection cavity at full voltage
- Axes show directions of pure displacement (black) and pure angle (bluish) (green is 90 from pure displacement)
 - Tilter motion is not quite orthogonal
- Ellipticity is the ellipse aspect ratio
- This plot shows equivalent 'angle trajectory'

- Effective beam tilt scale 'full width dipole projection' is 0.9 of displacement for 8 mm bunch (scales with bunch length)
- See 29 um peak to peak kick at full I and 20 um projected dipole at monitor
 - Good vertical streak of 7 um beam!
 - Tilt angle 20um/8mm = 2.5 mrad

Comparison – 3.5 and .4 mA

Estimate of bunch length from ellipticity

ellipse min / max vs bunch length

10

Ś.

6

12

14

Ellipse min/max vs bunch length (mm) 0.8 for C-band Only length scale 0.6used is RF wavelength ATF bunch length range 0.4 0.2-

Marc Ross – *SLAC*

Acce

July 14, 2003

Group

Summary of bunch length measurements

Data file	Condition	ellipticity	bunch length (mm)	ATF-01-01
datac8	nominal I= 3.5mA	0.81	8.5	9.0
datac9	0.39 mA	0.64	6.9	6.3
datac10	1.7 mA	0.74	7.7	7.5
datac11	.465 mA	0.61	6.6	6.8
datac12	0.3mA Vc 150 KV	0.79	8.3	8.8

- First bunch length measurement made entirely using RF cavities
- Beam/monitor jitter ~ 1 um (very stable over hours!)

July 14, 2003

American Linear Collider

Group

High Bandwidth Cavity BPMs for Multibunch

- Can imagine building a low Q cavity.
 - Strong coupling difficult
 - Fundamental mode overlap problem increases.
- Can look at signals from standard cavity BPM with higher bandwidth electronics.
- Integration time of 3ns vs ~300ns causes a loss of X10 (?) in resolution.
- Since bunches add coherently, *train* offsets or tilts can generate very large signals.

Accelerator Instrumentation RD Marc Ross – **SLAC**

July 14, 2003

Phase space diagnostics based on deflecting/ 'crab' RF

- Opens up new level of beam control and monitoring
 active projects at SLAC (SPPS) & DESY (TTF2)
- Extensive use planned for FEL's, where short bunches critical
- Needed for finite crossing angle machines big impact on *L*
- Needed to *correct* in addition to diagnose

Accelerator Instrumentation RD Marc Ross – **SLAC**

July 14, 2003

Bunch Length Measurements with the RF Transverse Deflecting Cavity

Measured and predicted energy spread of a compressed bunch

Measured at end of linac

Examples of fitting two asymmetric Gaussians to the bunch profile

Numerically quantifying the width of non-Gaussian bunch profiles

H. Schlarb

Relative bunch length measurement based on wakefield energy loss scan

HEP must aggressively attack Controls/Instrumentation issues

- System challenges are clearly greater for HEP machines
- Look at the shift SLAC.DESY.KEK accelerator groups away from HEP toward nuclear/synchrotron radiation/FEL physics and technology
 - very active growth field
- Many accelerator designers have no intrinsic connection with HEP

July 14, 2003