Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology

K.K. Gan The Ohio State University July 14, 2003

K.K. Gan, M.O. Johnson, R.D. Kass, A. Rahimi, C Rush, M. Zoeller The Ohio State University

> S. Smith SLAC

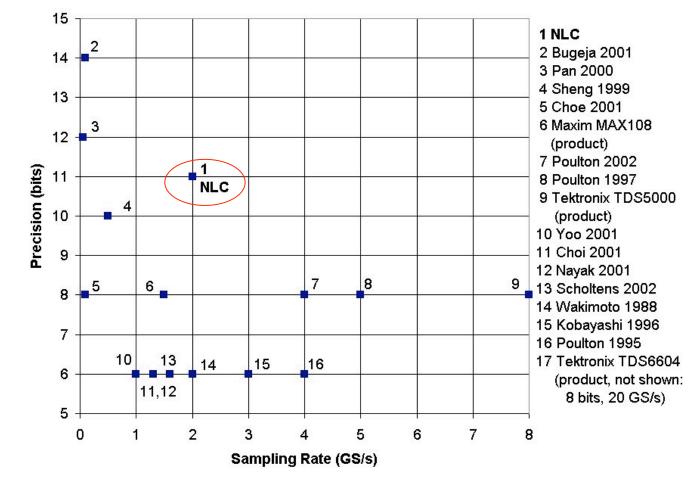
Outline

NLC Requirements
ADC Design
Plans

Beam Position Monitor Requirements at NLC

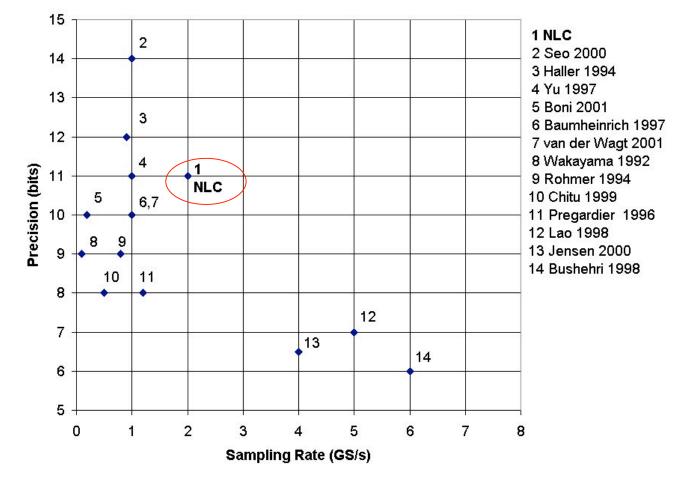
- NLC will collide 180-bunch trains of e⁻ and e⁺:
 - bunch spacing: 1.4 ns
 - alignment of individual bunches in a train: $< 1 \ \mu m$
 - BPM determines bunch-to-bunch misalignment
 - high bandwidth kickers bring the train into better alignment on next machine cycle
 - ⇒ multi-bunch BPM system with digitizers:
 - ★ 11-bit effective resolution
 - ★ 500 MHz bandwidth
 - ★ 2 G samples/s

Requirements of NLC Digitizers


Function	Qty.	Resolution	Bandwidth	Comments
		(eff. bits)	(MHz)	
LLRF Control	13,000	11	100	Slightly beyond state-of-the-art
Structure BPM	22,000	8	5	Existing technology
"Qaud" BPM	10,000	11	12	Existing technology
Multi-bunch BPM	1,200	11	500	Well beyond state-of-the-art
Total	46,200			

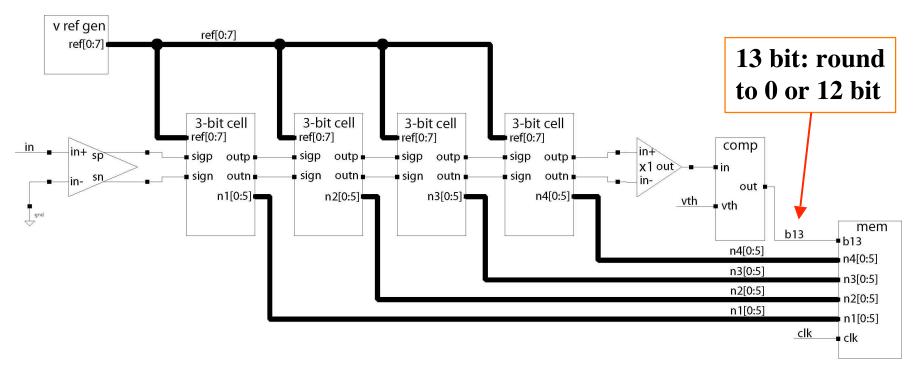
important to demonstrate feasibility of high speed/resolution digitizers
 redesign of low level RF technology is needed without the digitizers

Proposal


- design a digitizer chip using deep-submicron technology (0.25 μm)
 - radiation hard: > 60 Mrad
 - ⇒ no need for costly shielding and long cables
 - ⇒ readily access to electronics for testing and maintenance
- extensive experience in chip design using Cadence
 - design radiation-hard chip for CLEO III, ATLAS, CMS
- why OSU is interested?
 - help to solve a challenging NLC problem
 - potential applications in HEP
- Holtkamp Committee ranking: 2 on scale of 1 to 4 (lowest)

Current State-of-the-Art in Digitizer

• NLC requirement is somewhat beyond state-of-the-art


Current State-of-the-Art in Sample/Hold

• NLC requirement is somewhat beyond state-of-the-art

K.K. Gan

12-bit Pipelined Digitizer

- input crudely digitized by 1st 3-bit cell
- ⇒ digitized value subtracted from input
- ➡ difference is amplified by 8 and send to 2nd 3-bit cell...

Digitizer for Multi-bunch BPM

- most challenging digitizer: 11 bit, 2 G samples /s, 500 MHz bandwidth
- input: sequence of doublets at 1.4 ns batch spacing
 - characterize with one parameter: pulse height
 - minimum sampling: 1/1.4 ns = 714 MHz
 - ⇒ interleaving 3 digitizers for redundancy
 - \Rightarrow 2 G samples/s

Precision

- submicron CMOS supply voltage: 2.5 V
 - ⇒ differential signal: ~ 3 V full swing
 - ⇒ LSB: 3 V/2¹² = 732 μ V
 - ⇒ stability/accuracy of comparator thresholds, amplifier & S/H gains, charge injection: 366 µV = 0.5 LSB = 0.5/2¹² = 0.01%

Error Control

- three types of errors in digitizer
 - offset: comparator thresholds, amplifiers, S/H
 - gain: amplifiers, S/H
 - ⇒ 72 calibration values for offset and gain errors to be stored into on-chip memory
 - dynamic: timing, amplifiers & S/H settling
 - ⇒ dynamic errors are controlled via careful simulation/design to ensure each circuit has sufficient bandwidth to settle in required time

Fabrication Process

- gain-bandwidth requirement:
 - assume 0.7 ns for sample and 0.7 ns for hold
 - settling to 0.5 LSB for 12-bit digitizer requires 9τ : $0.5/2^{12} \sim e^{-9}$
 - $\Rightarrow \tau = 0.7 \text{ ns/9} = 171 \text{ ps}$
 - \Rightarrow gain x bandwidth = 8 x 1/2 $\pi\tau$ = 16.4 GHz
 - IBM process SiGe BiCMOS 6HP/6DM via MOSIS:
 40 GHz NPN bipolar transistors

Plans

- require six prototypes over three years
- has been funded by DOE for design/simulation in first year
 goal: has most circuit blocks ready for prototyping by end of first year