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Abstract 

Recent work on designs of dipoles, quadrupoles and sextupoles for the NLC Main Damping 
Ring has led to estimates of the systematic multipole components in the 2-D fields of these 
magnets.  We report on studies of the effects of these multipoles on the dynamic aperture of the 
damping ring, and show that the systematic multipole components in the present magnet 
designs are unlikely to be a severe limitation. 

1 Introduction 
A good dynamic aperture is needed in the NLC damping rings to ensure good injection 
efficiency.  The design target for the main damping rings is a dynamic aperture of fifteen times 
the injected beam size for on-momentum particles [1].  The principal limitations on the 
dynamic aperture are the sextupole fields needed to correct the chromaticity, and possible non-
linear components in the wiggler field.  However, systematic and random higher order 
components in the dipoles, quadrupoles and sextupoles (the principal magnets) are also 
expected to limit the dynamic aperture. 
 
Design work on permanent magnet and electromagnet options for the damping ring magnets 
has previously been reported [2].  Outline electromagnetic designs for the principal magnets 
have recently been completed.  All magnets are based on normal conducting electromagnet 
technology, and the designs specify the poles, yokes and coils.  The principal design 
constraints are the aperture, primary field strength and higher-order multipole components.  
Note that only two-dimensional designs have so far been studied; since the sextupoles in 
particular have short physical length compared to the pole-tip radius, it is possible that end 
effects could be significant, and careful studies and optimization of three-dimensional models 
will need to be performed. 
 
Systematic higher-order multipole components of the magnetic field arise principally through 
limitations on the shape of the pole-tip; the components are constrained by the overall 
symmetry of the magnet, and are the same in every magnet of a given type.  Random multipole 
components arise from variations in the construction of each individual magnet, and are not 
constrained by the symmetry of the design.  Whereas systematic errors are known from the 
design, the random errors are not.  Both types of error may be expected to limit the dynamic 
aperture of the lattice, and it is the purpose of the present note to quantify the effects of the 
systematic errors, and take an initial look at the random errors. 
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2 Systematic Multipole Components 

2.1 Dipoles 
The NLC MDR arc dipoles have a main field of 1.2 T, and a gradient of –6.605 T/m.  In 
addition to the main arc dipoles, there are dipoles in the cells matching the arcs to the straight 
sections which have the same main field, but gradients of –6.175 T/m (injection/extraction 
straight) and –8.604 T/m (wiggler straight).  There are also dipoles in the circumference-
correction chicane, which have a field up to 1 T, and no gradient.   
 
Designs have been produced so far only for the main arc dipoles.  The aperture is specified to 
accept an inscribed circle of radius 20 mm centered on the beam; this allows for a beam pipe of 
16 mm internal radius, 3 mm wall thickness and 1 mm clearance from the magnet.  A cross 
section of the magnet with magnetic field lines is shown in Figure 1.   
 

 
Figure 1 

Dipole cross-section showing coil and field lines. 
 
Multipole components are shown in Table 1.  Note that the k-values for the components of a 
field are defined by: 
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 is the beam rigidity, approximately 6.605 Tm at the 1.98 GeV nominal damping ring 
energy. 

Table 1 
Higher-order systematic multipoles in the NLC MDR main arc dipoles 

n kn 
B/Bnominal 

at x = 0.01 m 
0 0.1817 m-1 - 
1 -1.000 m-2 - 
2 -1.223 m-3 -3.563×10-4 
3 -81.96 m-4 -7.957×10-5 
4 -2.138×104 m-5 -5.627×10-5 
5 -1.879×104 m-6 -9.120×10-8 
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The variation of the field from nominal is shown as a function of x in Figure 2.  The variation 
of the field from the nominal at 20 mm horizontally from the beam axis is around 0.3%, and is 
dominated (as might be expected) by the sextupole component. 
 

 
Figure 2 

Field variation from nominal in a main arc dipole as a function of 
horizontal displacement from the orbit. 

 

2.2 Quadrupoles 
There are 18 families of quadrupoles in the present lattice design.  However, the pole tip radius 
of all but two of the quadrupoles is 20 mm; the odd quadrupoles (in the injection/extraction 
regions) have a radius 30 mm.  Generally, the field quality near the beam improves for larger 
pole-tip radius, so we treat the 30 mm quadrupoles as having the same field quality as the 20 
mm quadrupoles.  A cross-section of the quadrupole is shown in Figure 3. 
 

 
Figure 3 

Quadrupole cross-section showing coil and field lines. 
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The higher-order multipole components and deviations from the quadrupole gradient are 
shown in Table 2.  These values actually refer to a larger gradient than is actually neede in the 
present lattice design; values for the required quadrupoles are found by scaling the values in 
the table. 

Table 2 
Higher-order systematic multipoles in one family of NLC MDR quadrupoles. 

n kn 
g/gnominal 

at x = 0.016 m 
1 6.954 m-2 - 
5 2.440×107 m-6 9.581×10-3 
9 -8.358×1016 m-10 -1.280×10-3 
13 -4.513×1028 m-14 -3.814×10-3 
17 -5.138×1039 m-18 -6.514×10-4 
21 7.485×1051 m-22 5.348×10-4 

 
The deviation from nominal quadrupole gradient as a function of horizontal offset from the 
beam axis is shown in Figure 4.  Up to 16 mm (the internal radius of the beam pipe), the 
variation in the quadrupole gradient is less than 0.5%. 
 

 
Figure 4 

Quadrupole gradient variation as a function of horizontal displacement from the orbit. 
 

2.3 Sextupoles 
The present lattice design includes just two families of sextupoles; both have magnetic length 
60 mm, and the aperture requirements specify a pole tip radius greater than 20 mm.  To achieve 
the required field quality, the sextupole has been designed with a pole tip radius of 0.028 m.  A 
cross-section is shown in Figure 5.  We emphasize the fact that the present design is only two 
dimensional, and that this magnet has a pole-tip radius nearly half the magnetic length.  
Optimization of a full three-dimensional model of this magnet is therefore important, as is 
careful modeling of the dynamics in the magnet; it is planned to carry out this work in the 
future. 
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Figure 5 

Sextupole cross-section showing coil and field lines. 
 
Only one higher-order multipole component makes a significant contribution to the field.  This 
component is given in Table 3, and the variation in the sextupole gradient is shown in Figure 6.  
Up to 16 mm, the variation in gradient is less than 1.7%.  As in the case of the quadrupoles, 
values for the multipole components in the sextupoles used in the lattice are found by scaling 
the values in Table 3 by the sextupole strength. 

Table 3 
Higher-order systematic multipoles in one family of NLC MDR sextupoles. 

n kn 
gs /gs,nominal 

at x = 0.016 m 
2 454.2 m-3 - 
8 -3.291×1014 m-9 -0.0169 

 

 
Figure 6 

Sextupole gradient variation as a function of horizontal displacement from the orbit. 
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3 Random Multipole Components 
Variation in construction from magnet to magnet leads to multipole components that are 
unique for each magnet.  The random errors allow multipole components that in the case of 
systematic errors are forbidden by the symmetry of the design.  At the present time, it is not 
known precisely how large the random errors are likely to be, nor is it known how they will be 
distributed between higher-order multipole components.  To give some indication of the 
sensitivity of the lattice to random errors, we have taken those used for studies of the SPEAR 3 
lattice [3], as shown in Table 4. 

Table 4  
Assumed higher-order random multipoles (rms values) in MDR main magnets. 

Magnet 
Multipole Component 

n 
Reference Radius 

r0 /m 
Field Variation at r0 

Bn/B0 

Dipole 2 (sextupole) 0.03 10-4 

3 (octupole) 5×10-4 
4 10-4 
5 10-4 
6 5×10-4 
7 10-4 
8 10-4 
9 10-4 
10 5×10-4 
11 10-4 
12 10-4 
13 10-4 

Quadrupole 

14 

0.032 

5×10-4 
5 2×10-3 Sextupole 
7 

0.032 
5×10-4 

 
Since the design and construction of the magnets for SPEAR 3 will certainly be different from 
those used in the damping rings, the values in Table 4 are not likely to be very realistic; 
however, we can assume that they give some indication of what one might expect. 

4 Dynamic Effects 
The dynamic aperture was calculated by tracking 500 turns of the full lattice in the beamline 
simulation code MERLIN.  Only systematic and random higher-order multipole field errors 
were applied; nominal quadrupole and sextupole gradients were used, and no misalignments 
were applied.  The results for on-momentum particles, and particles with ±0.5% momentum 
deviation, in the cases of no errors, systematic higher-order multipoles, and systematic and 
random higher-order multipoles, are shown in Figure 7.  Note that we show a single 
representative seed for the random errors. 
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(a) 

–0.5% momentum deviation 
No field errors 

 

 
(b) 

No momentum deviation 
No field errors 

 

 
(c) 

+0.5% momentum deviation 
No field errors 

 
(d) 

–0.5% momentum deviation 
Systematic field errors 

 

 
(e) 

No momentum deviation 
Systematic field errors 

 
(f) 

+0.5% momentum deviation 
Systematic field errors 

 
(g) 

-0.5% momentum deviation 
Systematic and random field errors 

 
(h) 

No momentum deviation 
Systematic and random field errors 

 
(i) 

+0.5% momentum deviation 
Systematic and random field errors 

Figure 7 

Dynamic aperture of the NLC Main Damping Ring under various conditions.  The points show stable orbits at the 
observation point ( x=0.911 m, y=.911 m, x=0.0548 m), and the half-ellipse shows fifteen times the injected 

beam size (target dynamic aperture). 
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The results show that the dynamic aperture for on-momentum particles, and particles with up 
to ±0.5% momentum deviation is close to (or larger than) the target of fifteen times the injected 
beam size in all cases.  After some reduction in the dynamic aperture from the systematic 
errors, the random errors appear to have relatively little effect.  The principal reason for this is 
that the dynamic aperture observed with the systematic errors gives the region over which the 
particle motion is close to linear; particles whose motion is significantly nonlinear and are 
barely stable in the case of the “ideal” magnets are quickly lost, and adding further errors has 
little effect.  As expected, increasing the sizes of the random errors does not have a dramatic 
impact.  Nonetheless, we feel that the random errors we have used may be rather conservative, 
and the effects of more realistic errors should be explored, with the aim of specifying 
construction tolerances on the higher-order multipoles. 
 
Note that we have used a linear model for the damping wiggler, which is represented as a 
sequence of dipoles with no higher harmonic content.  Effects of nonlinearities in the wiggler 
have been studied previously [4], and indications are that the present wiggler design will not 
significantly limit the dynamic aperture.  More rigorous studies of nonlinear dynamics of the 
wiggler are in progress [5], and when complete, a more careful evaluation of dynamics in the 
full lattice, including errors in the multipoles, can be performed. 

5 Conclusions 
Present designs for the principal magnets in the NLC Main Damping Rings suggest that the 
systematic higher-order multipole components will allow an acceptable dynamic aperture.  
Indications are that the dynamic aperture will remain sufficient in the presence of reasonable 
random errors arising from construction tolerances, although we have not yet set any limits on 
these.  The magnets have been modeled using two-dimensional fields, and it is possible that 
edge effects could be significant, particularly for the sextupoles where the pole-tip radius is 
nearly half the magnetic length.  Future studies will consider optimization of the three-
dimensional model, and quantify the effects on the dynamics. 
 
The work has been carried out using a linear model for the wiggler.  Further detailed studies of 
the dynamics in the full lattice should be carried out when studies of the nonlinear wiggler 
model have been completed. 
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