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Abstract:  
During acceleration in the linac structure, the beam not only increases its 
longitudinal momentum, but also experiences a transverse kick from the 
accelerating mode which is linear in accelerating gradient. This effect is 
neglected in such computer codes as LIAR and TRANSPORT. We derived the 
Hamiltonian equations that describe the effect of RF deflection into the 
acceleration process and included it into the computational engine of LIAR. By 
comparing orbits for the NLC main linac, we found that the difference between 
the two algorithms is about 10\%. The effect will be more pronounced at smaller 
beam energy. 
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Abstract

During acceleration in the linac structure, the beam not only in-
creases its longitudinal momentum, but also experiences a transverse
kick from the accelerating mode which is linear in accelerating gradi-
ent. This effect is neglected in computer codes LIAR and TRANS-
PORT. We derived the Hamiltonian equations that describe the effect
of RF deflections during acceleration and included it into the compu-
tational engine of LIAR. By comparing orbits for the NLC main linac,
we found that the difference between the two algorithms is about 10%.
The effect will be more pronounced at smaller beam energy.

1 Introduction

When a particle is accelerated in a RF structure, it not only increases the
longitudinal energy, but also changes its transverse momentum. This effect
is often neglected in the simulation codes. In this note we derive the equa-
tions that take into account the transverse deflections during acceleration
and demonstrate their effect in application to the NLC beam dynamics.

2 Equations

It is usually assumed that during acceleration, in an axisymmetric cavity
or RF structure, only the longitudinal momentum of the particle increases,
pz0 → pz0+dpz, where pz0 is the initial longitudinal momentum, and dpz is the
momentum change (considered here as an infinitesimally small quantity) due
to the acceleration. With this assumption, the transverse component of the

1



momentum, px, remains constant, px = px0. This means that the angle x′ ≡
dx/ds after passing the cavity is x′ = px/(pz0 +dpz) ≈ x′0(1−dpz/pz0), where
x′0 is the value of the angle before the acceleration. For a short structure of
length dl, one finds the following relation between the initial and final values
of the coordinate and the angle:

dx = x− x0 = x′0dl, dx′ = x′ − x′0 = −dl
x′0
pz0

dpz

ds
. (1)

Note that these equations can be obtained with the help of a simple Hamil-
tonian,

H(px, s) =
p2

x

2pz (s)
, (2)

where the conjugate variables are x and px, and the dependence pz(s) takes
into account the acceleration in the cavity. Indeed, from Eq. (2) it follows
that p′x = −∂H/∂x = 0, that is the assumed conservation of px, and x′ =
∂H/∂px = px/pz.

If the change of the longitudinal momentum ∆pz in the acceleration is
not infinitesimally small, one should integrate the infinitesimal equations
(1) to find the transformation from x0, x′0 to x, x′. Assuming a constant
acceleration gradient, dpz/ds = const, one finds

x = x0 + x′0l
pz0

∆pz

ln

(
1 +

∆pz

pz0

)
,

x′ =
x′0

1 + ∆pz/pz0

, (3)

where l is the length of the structure. These equations are used in computer
codes such as TRANSPORT [1] and LIAR [2] for particle tracking through
accelerating structures.

It has been pointed out long time ago [3] that the assumption px = const
during acceleration is not correct. Due to the fringe fields in the cavity, the
particle gets a kick in the transverse direction that is proportional to the
product of the increase of the longitudinal momentum dpz and px,

dpx =
1

2
px

dpz

pz(s)
. (4)
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It is interesting to note, that with this correction, instead of Eq. (1), we
obtain the following formula for dx′

dx′ =
px0 + dpx

pz0 + dpz

− px0

pz0

= −dl
x′0

2pz0

dpz

ds
, (5)

which is exactly two times smaller then predicted by Eq. (1). Fortunately, as
we will see below, the effect of RF deflections on the beam dynamics is not so
dramatic, because it is compensated by a particle offset in the acceleration.

The RF deflection can be included into the Hamiltonian (2) by adding a
second term

H(px, s) =
p2

x

2pz (s)
− 1

2
xpx

p′z(s)
pz(s)

. (6)

Indeed, now p′x = −∂H/∂x = pxp
′
z(s)/2pz, which is equivalent to Eq. (4).

Note however that, as follows from the Hamiltonian (6), after the passage of
the cavity, the particle will be offset in the transverse direction by dx,

dx = dl
∂H

∂px

= −1

2
x
p′z
pz

dl = −1

2
x
dpz

pz

. (7)

This offset is due to the radial drift in the cavity under the influence of
transverse fields of the accelerating mode.

With equations (4) and (7), the relation between x0, x′0 and x, x′, for
infinitesimally short cavity of length dz that increases the longitudinal mo-
mentum by dpz, becomes

x = x0 + x′0dz − 1

2
x
dpz

pz

,

x′ = x′0 −
1

2
x′

dpz

pz

. (8)

Again, for a finite value of ∆pz one has to integrate the differential equations
(8) to obtain

x =

√
p0

p
(x0 + lx′0),

x′ = x′0

√
p0

p
. (9)

These equations constitute a Hamiltonian map that describes the acceleration
in the cavity with effect of the RF deflections.
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