High Gradient, Normal Conducting Accelerator Structures

R. D. Ruth

Accelerator Research Department A
Where we are.

- Tremendous amount of progress in recent times.
- A lot of ‘water under the bridge’.
- Congratulations to the Team.
- Recent appreciation of role of pulsed heating in normal conducting, high gradient tests.
- Probably has always been a factor, even in high gradient S-band tests.
- Need to reinvent the structures to eliminate enhancement of pulsed heating or reduce the enhancement to acceptable levels.
- Keep an open mind as designs evolve.
Damping and Detuning

• Coupler pulsed heating problem can and will be solved.
• Detuning is a wakefield reduction ‘for free’, must use it.
• Damping slots/manifolds may be a problem.
• Need to consider other alternatives:
 – Cylindrical Symmetric HOM couplers, i.e.
 – “Choke Mode” type damping couplers
Standing or Traveling Wave?

• Need to explore both options.
• Standing Wave
 – Peak Gradient = loaded gradient
 – 50% more couplers
 – Use about three choke mode dampers/structure
• Traveling Wave
 – Peak Gradient > loaded gradient
 – Use classic slots to waveguide,
 – Or use choke mode dampers where needed.
SLAC- 40 years old this year

- SLAC began life at around 20 BeV
- Gradient around 7 MV/m
- Overhead in gradient (up to 20 MV/m) has given long life to the facility.
- The future linear collider will need a long life also.
- The pressure is on the structure to support even higher gradients.
- The Skrinsky Challenge: 100 MV/m Loaded
Is a loaded gradient of 100 MV/m possible?

- **Pulsed heating in normal cylindrical cell.**
- **Maximum RF pulse heating temperature vs. cell iris size**
 - 11.424 GHz π standing wave structure
 - 100 MV/m loaded gradient
 - 400 ns pulse width
- **Traveling wave pulsed heating is higher by about a factor of two.**
- **Is this too much??**
Processing SW565 standing wave structures, 19-21 June 2002, Pulsed heating estimate for Input coupler iris.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>250</td>
<td>150</td>
<td>13.5</td>
<td>160</td>
</tr>
<tr>
<td>39</td>
<td>250</td>
<td>130</td>
<td>3.5</td>
<td>130</td>
</tr>
<tr>
<td>30</td>
<td>450</td>
<td>120</td>
<td>6</td>
<td>160</td>
</tr>
<tr>
<td>21</td>
<td>450</td>
<td>100</td>
<td>0</td>
<td>108</td>
</tr>
</tbody>
</table>